赞
踩
ultralytics/cfg/models/v8/yolov8-RevCol.yaml
使用(ICLR2023)Reversible Column Networks对yolov8主干进行重设计,里面的支持更换不同的C2f-Block.
EMASlideLoss
使用EMA思想与SlideLoss进行相结合.
ultralytics/cfg/models/v8/yolov8-dyhead-DCNV3.yaml
ultralytics/cfg/models/v8/yolov8-C2f-EMBC.yaml
使用Efficientnet中的MBConv与EffectiveSE改进C2f.
ultralytics/cfg/models/v8/yolov8-GhostHGNetV2.yaml
使用Ghost_HGNetV2作为YOLOV8的backbone.
ultralytics/cfg/models/v8/yolov8-RepHGNetV2.yaml
使用Rep_HGNetV2作为YOLOV8的backbone.
ultralytics/cfg/models/v8/yolov8-C2f-DWR-DRB.yaml
使用UniRepLKNet中的DilatedReparamBlock对DWRSeg中的Dilation-wise Residual(DWR)的模块进行二次创新后改进C2f.
ultralytics/cfg/models/v8/yolov8-ASF-P2.yaml
在ultralytics/cfg/models/v8/yolov8-ASF.yaml的基础上进行二次创新,引入P2检测层并对网络结构进行优化.
ultralytics/cfg/models/v8/yolov8-CSP-EDLAN.yaml
使用DualConv打造CSP Efficient Dual Layer Aggregation Networks改进yolov8.
ultralytics/cfg/models/v8/yolov8-bifpn-SDI.yaml
使用U-NetV2中的 Semantics and Detail Infusion Module对BIFPN进行二次创新.
ultralytics/cfg/models/v8/yolov8-goldyolo-asf.yaml
利用华为2023最新GOLD-YOLO中的Gatherand-Distribute与ASF-YOLO中的Attentional Scale Sequence Fusion进行二次创新改进yolov8的neck.
ultralytics/cfg/models/v8/yolov8-dyhead-DCNV4.yaml
使用DCNV4对DyHead进行二次创新.(请关闭AMP进行训练,使用教程请看20240116版本更新说明)
ultralytics/cfg/models/v8/yolov8-HSPAN.yaml
对MFDS-DETR中的HS-FPN进行二次创新后得到HSPAN改进yolov8的neck.
ultralytics/cfg/models/v8/yolov8-GDFPN.yaml
使用DAMO-YOLO中的RepGFPN与ICCV2023 DySample进行二次创新改进Neck.
ultralytics/cfg/models/v8/yolov8-HSPAN-DySample.yaml
对MFDS-DETR中的HS-FPN进行二次创新后得到HSPAN再进行创新,使用ICCV2023 DySample改进其上采样模块.
ultralytics/cfg/models/v8/yolov8-ASF-DySample.yaml
使用ASF-YOLO中的Attentional Scale Sequence Fusion与ICCV2023 DySample组合得到Dynamic Sample Attentional Scale Sequence Fusion.
ultralytics/cfg/models/v8/yolov8-C2f-DCNV2-Dynamic.yaml
利用自研注意力机制MPCA强化DCNV2中的offset和mask.
ultralytics/cfg/models/v8/yolov8-C2f-iRMB-Cascaded.yaml
使用EfficientViT CVPR2023中的CascadedGroupAttention对EMO ICCV2023中的iRMB进行二次创新来改进C2f.
ultralytics/cfg/models/v8/yolov8-C2f-iRMB-DRB.yaml
使用UniRepLKNet中的DilatedReparamBlock对EMO ICCV2023中的iRMB进行二次创新来改进C2f.
ultralytics/cfg/models/v8/yolov8-C2f-iRMB-SWC.yaml
使用shift-wise conv对EMO ICCV2023中的iRMB进行二次创新来改进C2f.
ultralytics/cfg/models/v8/yolov8-DBBNCSPELAN.yaml
使用Diverse Branch Block CVPR2021对YOLOV9中的RepNCSPELAN进行二次创新后改进yolov8.
ultralytics/cfg/models/v8/yolov8-OREPANCSPELAN.yaml
使用Online Convolutional Re-parameterization (CVPR2022)对YOLOV9中的RepNCSPELAN进行二次创新后改进yolov8.
ultralytics/cfg/models/v8/yolov8-DRBNCSPELAN.yaml
使用UniRepLKNet中的DilatedReparamBlock对YOLOV9中的RepNCSPELAN进行二次创新后改进yolov8.
ultralytics/cfg/models/v8/yolov8-DynamicHGNetV2.yaml
使用CVPR2024 parameternet中的DynamicConv对CVPR2024 RTDETR中的HGBlokc进行二次创新.
ultralytics/cfg/models/v8/yolov8-C2f-RVB-EMA.yaml
使用CVPR2024 RepViT中的RepViTBlock和EMA注意力机制改进C2f.
ultralytics/cfg/models/v8/yolov8-ELA-HSFPN.yaml
使用Efficient Local Attention改进HSFPN.
ultralytics/cfg/models/v8/yolov8-CA-HSFPN.yaml
使用Coordinate Attention CVPR2021改进HSFPN.
ultralytics/cfg/models/v8/yolov8-CAA-HSFPN.yaml
使用CVPR2024 PKINet中的CAA模块HSFPN.
ultralytics/cfg/models/v8/yolov8-CSMHSA.yaml
对Mutil-Head Self-Attention进行创新得到Cross-Scale Mutil-Head Self-Attention.
ultralytics/cfg/models/v8/yolov8-CAFMFusion.yaml
利用具有HCANet中的CAFM,其具有获取全局和局部信息的注意力机制进行二次改进content-guided attention fusion.
ultralytics/cfg/models/v8/yolov8-LAWDS.yaml
Light Adaptive-weight downsampling.自研模块,具体讲解请看百度云链接中的视频.
ultralytics/cfg/models/v8/yolov8-C2f-EMSC.yaml
Efficient Multi-Scale Conv.自研模块,具体讲解请看百度云链接中的视频.
ultralytics/cfg/models/v8/yolov8-C2f-EMSCP.yaml
Efficient Multi-Scale Conv Plus.自研模块,具体讲解请看百度云链接中的视频.
Lightweight Shared Convolutional Detection Head
自研轻量化检测头.
detect:ultralytics/cfg/models/v8/yolov8-LSCD.yaml
seg:ultralytics/cfg/models/v8/yolov8-seg-LSCD.yaml
pose:ultralytics/cfg/models/v8/yolov8-pose-LSCD.yaml
obb:ultralytics/cfg/models/v8/yolov8-obb-LSCD.yaml
Task Align Dynamic Detection Head
自研任务对齐动态检测头.
detect:ultralytics/cfg/models/v8/yolov8-TADDH.yaml
seg:ultralytics/cfg/models/v8/yolov8-seg-TADDH.yaml
pose:ultralytics/cfg/models/v8/yolov8-pose-TADDH.yaml
obb:ultralytics/cfg/models/v8/yolov8-obb-TADDH.yaml
ultralytics/cfg/models/v8/yolov8-FDPN.yaml
自研特征聚焦扩散金字塔网络(Focusing Diffusion Pyramid Network)
ultralytics/cfg/models/v8/yolov8-FDPN-DASI.yaml
使用HCFNet中的Dimension-Aware Selective Integration Module对自研的Focusing Diffusion Pyramid Network再次创新.
ultralytics/cfg/models/v8/yolov8-RGCSPELAN.yaml
自研RepGhostCSPELAN.
ultralytics/cfg/models/v8/yolov8-efficientViT.yaml
(CVPR2023)efficientViT替换yolov8主干.
ultralytics/cfg/models/v8/yolov8-fasternet.yaml
(CVPR2023)fasternet替换yolov8主干.
ultralytics/cfg/models/v8/yolov8-timm.yaml
使用timm支持的主干网络替换yolov8主干.
ultralytics/cfg/models/v8/yolov8-convnextv2.yaml
使用convnextv2网络替换yolov8主干.
ultralytics/cfg/models/v8/yolov8-EfficientFormerV2.yaml
使用EfficientFormerV2网络替换yolov8主干.(需要看常见错误和解决方案的第五点)
ultralytics/cfg/models/v8/yolov8-vanillanet.yaml
vanillanet替换yolov8主干.
ultralytics/cfg/models/v8/yolov8-LSKNet.yaml
LSKNet(2023旋转目标检测SOTA的主干)替换yolov8主干.
ultralytics/cfg/models/v8/yolov8-swintransformer.yaml
SwinTransformer-Tiny替换yolov8主干.
ultralytics/cfg/models/v8/yolov8-repvit.yaml
RepViT替换yolov8主干.
ultralytics/cfg/models/v8/yolov8-CSwinTransformer.yaml
使用CSWin-Transformer(CVPR2022)替换yolov8主干.(需要看常见错误和解决方案的第五点)
ultralytics/cfg/models/v8/yolov8-HGNetV2.yaml
使用HGNetV2作为YOLOV8的backbone.
ultralytics/cfg/models/v8/yolov8-unireplknet.yaml
使用UniRepLKNet替换yolov8主干.
ultralytics/cfg/models/v8/yolov8-TransNeXt.yaml
使用TransNeXt改进yolov8的backbone.(需要看常见错误和解决方案的第五点)
ultralytics/cfg/models/rt-detr/yolov8-rmt.yaml
使用CVPR2024 RMT改进rtdetr的主干.
ultralytics/cfg/models/v8/yolov8-pkinet.yaml
使用CVPR2024 PKINet改进backbone.(需要安装mmcv和mmengine)
ultralytics/cfg/models/v8/yolov8-mobilenetv4.yaml
使用MobileNetV4改进yolov8-backbone.
ultralytics/cfg/models/v8/yolov8-FocalModulation.yaml
使用Focal Modulation替换SPPF.
ultralytics/cfg/models/v8/yolov8-SPPF-LSKA.yaml
使用LSKA注意力机制改进SPPF,增强多尺度特征提取能力.
ultralytics/cfg/models/v8/yolov8-AIFI.yaml
使用RT-DETR中的Attention-based Intrascale Feature Interaction(AIFI)改进yolov8.
ultralytics/cfg/models/v8/yolov8-bifpn.yaml
添加BIFPN到yolov8中.
其中BIFPN中有三个可选参数:
ultralytics/cfg/models/v8/yolov8-slimneck.yaml
使用VoVGSCSP\VoVGSCSPC和GSConv替换yolov8 neck中的C2f和Conv.
Asymptotic Feature Pyramid Networkreference
a. ultralytics/cfg/models/v8/yolov8-AFPN-P345.yaml
b. ultralytics/cfg/models/v8/yolov8-AFPN-P345-Custom.yaml
c. ultralytics/cfg/models/v8/yolov8-AFPN-P2345.yaml
d. ultralytics/cfg/models/v8/yolov8-AFPN-P2345-Custom.yaml
其中Custom中的block支持大部分C2f-XXX结构.
ultralytics/cfg/models/v8/yolov8-RCSOSA.yaml
使用RCS-YOLO中的RCSOSA替换C2f.
ultralytics/cfg/models/v8/yolov8-goldyolo.yaml
利用华为2023最新GOLD-YOLO中的Gatherand-Distribute进行改进特征融合模块
ultralytics/cfg/models/v8/yolov8-GFPN.yaml
使用DAMO-YOLO中的RepGFPN改进Neck.
ultralytics/cfg/models/v8/yolov8-EfficientRepBiPAN.yaml
使用YOLOV6中的EfficientRepBiPAN改进Neck.
ultralytics/cfg/models/v8/yolov8-ASF.yaml
使用ASF-YOLO中的Attentional Scale Sequence Fusion改进yolov8.
ultralytics/cfg/models/v8/yolov8-SDI.yaml
使用U-NetV2中的 Semantics and Detail Infusion Module对yolov8中的feature fusion部分进行重设计.
ultralytics/cfg/models/v8/yolov8-HSFPN.yaml
使用MFDS-DETR中的HS-FPN改进yolov8的neck.
ultralytics/cfg/models/v8/yolov8-CSFCN.yaml
使用Context and Spatial Feature Calibration for Real-Time Semantic Segmentation中的Context and Spatial Feature Calibration模块改进yolov8.
ultralytics/cfg/models/v8/yolov8-CGAFusion.yaml
使用DEA-Net中的content-guided attention fusion改进yolov8-neck.
ultralytics/cfg/models/v8/yolov8-dyhead.yaml
添加基于注意力机制的目标检测头到yolov8中.
ultralytics/cfg/models/v8/yolov8-EfficientHead.yaml
对检测头进行重设计,支持10种轻量化检测头.详细请看ultralytics/nn/extra_modules/head.py中的Detect_Efficient class.
ultralytics/cfg/models/v8/yolov8-aux.yaml
参考YOLOV7-Aux对YOLOV8添加额外辅助训练头,在训练阶段参与训练,在最终推理阶段去掉.
其中辅助训练头的损失权重系数可在ultralytics/utils/loss.py中的class v8DetectionLoss中的__init__函数中的self.aux_loss_ratio设定,默认值参考yolov7为0.25.
ultralytics/cfg/models/v8/yolov8-seg-EfficientHead.yaml(实例分割)
对检测头进行重设计,支持10种轻量化检测头.详细请看ultralytics/nn/extra_modules/head.py中的Detect_Efficient class.
ultralytics/cfg/models/v8/yolov8-SEAMHead.yaml
使用YOLO-Face V2中的遮挡感知注意力改进Head,使其有效地处理遮挡场景.
ultralytics/cfg/models/v8/yolov8-MultiSEAMHead.yaml
使用YOLO-Face V2中的遮挡感知注意力改进Head,使其有效地处理遮挡场景.
ultralytics/cfg/models/v8/yolov8-PGI.yaml
使用YOLOV9的programmable gradient information改进YOLOV8.(PGI模块可在训练结束后去掉)
Adaptive Training Sample Selection匹配策略.
在ultralytics/utils/loss.py中的class v8DetectionLoss中自行选择对应的self.assigner即可.
soft-nms(IoU,GIoU,DIoU,CIoU,EIoU,SIoU,ShapeIoU)
soft-nms替换nms.(建议:仅在val.py时候使用,具体替换请看20240122版本更新说明)
ultralytics/cfg/models/v8/yolov8-ContextGuidedDown.yaml
使用CGNet中的Light-weight Context Guided DownSample进行下采样.
ultralytics/cfg/models/v8/yolov8-SPDConv.yaml
使用SPDConv进行下采样.
ultralytics/cfg/models/v8/yolov8-dysample.yaml
使用ICCV2023 DySample改进yolov8-neck中的上采样.
ultralytics/cfg/models/v8/yolov8-CARAFE.yaml
使用ICCV2019 CARAFE改进yolov8-neck中的上采样.
ultralytics/cfg/models/v8/yolov8-HWD.yaml
使用Haar wavelet downsampling改进yolov8的下采样.(请关闭AMP情况下使用)
ultralytics/cfg/models/v8/yolov8-v7DS.yaml
使用YOLOV7 CVPR2023的下采样结构改进YOLOV8中的下采样.
ultralytics/cfg/models/v8/yolov8-ADown.yaml
使用YOLOV9的下采样结构改进YOLOV8中的下采样.
ultralytics/cfg/models/v8/yolov8-SRFD.yaml
使用A Robust Feature Downsampling Module for Remote Sensing Visual Tasks改进yolov8的下采样.
ultralytics/cfg/models/v8/yolov8-C2f-Faster.yaml
使用C2f-Faster替换C2f.(使用FasterNet中的FasterBlock替换C2f中的Bottleneck)
ultralytics/cfg/models/v8/yolov8-C2f-ODConv.yaml
使用C2f-ODConv替换C2f.(使用ODConv替换C2f中的Bottleneck中的Conv)
ultralytics/cfg/models/v8/yolov8-C2f-ODConv.yaml
使用C2f-ODConv替换C2f.(使用ODConv替换C2f中的Bottleneck中的Conv)
ultralytics/cfg/models/v8/yolov8-C2f-Faster-EMA.yaml
使用C2f-Faster-EMA替换C2f.(C2f-Faster-EMA推荐可以放在主干上,Neck和head部分可以选择C2f-Faster)
ultralytics/cfg/models/v8/yolov8-C2f-DBB.yaml
使用C2f-DBB替换C2f.(使用DiverseBranchBlock替换C2f中的Bottleneck中的Conv)
ultralytics/cfg/models/v8/yolov8-C2f-CloAtt.yaml
使用C2f-CloAtt替换C2f.(使用CloFormer中的具有全局和局部特征的注意力机制添加到C2f中的Bottleneck中)(需要看常见错误和解决方案的第五点)
ultralytics/cfg/models/v8/yolov8-C2f-SCConv.yaml
SCConv(CVPR2020 http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf)与C2f融合.
ultralytics/cfg/models/v8/yolov8-C2f-SCcConv.yaml
ScConv(CVPR2023 https://openaccess.thecvf.com/content/CVPR2023/papers/Li_SCConv_Spatial_and_Channel_Reconstruction_Convolution_for_Feature_Redundancy_CVPR_2023_paper.pdf)与C2f融合.
(取名为SCcConv的原因是在windows下命名是不区分大小写的)
ultralytics/cfg/models/v8/yolov8-KernelWarehouse.yaml
使用Towards Parameter-Efficient Dynamic Convolution添加到yolov8中.
使用此模块需要注意,在epoch0-20的时候精度会非常低,过了20epoch会正常.
ultralytics/cfg/models/v8/yolov8-C2f-DySnakeConv.yaml
DySnakeConv与C2f融合.
ultralytics/cfg/models/v8/yolov8-C2f-DCNV2.yaml
使用C2f-DCNV2替换C2f.(DCNV2为可变形卷积V2)
ultralytics/cfg/models/v8/yolov8-C2f-DCNV3.yaml
使用C2f-DCNV3替换C2f.(DCNV3为可变形卷积V3(CVPR2023,众多排行榜的SOTA))
官方中包含了一些指定版本的DCNV3 whl包,下载后直接pip install xxx即可.具体和安装DCNV3可看百度云链接中的视频.
ultralytics/cfg/models/v8/yolov8-C2f-OREPA.yaml
使用C2f-OREPA替换C2f.Online Convolutional Re-parameterization (CVPR2022)
ultralytics/cfg/models/v8/yolov8-C2f-REPVGGOREPA.yaml
使用C2f-REPVGGOREPA替换C2f.Online Convolutional Re-parameterization (CVPR2022)
ultralytics/cfg/models/v8/yolov8-C2f-DCNV4.yaml
使用DCNV4改进C2f.(请关闭AMP进行训练,使用教程请看20240116版本更新说明)
ultralytics/cfg/models/v8/yolov8-C2f-ContextGuided.yaml
使用CGNet中的Light-weight Context Guided改进C2f.
ultralytics/cfg/models/v8/yolov8-C2f-MSBlock.yaml
使用YOLO-MS中的MSBlock改进C2f.
ultralytics/cfg/models/v8/yolov8-C2f-DLKA.yaml
使用deformableLKA改进C2f.
ultralytics/cfg/models/v8/yolov8-C2f-DAttention.yaml
使用Vision Transformer with Deformable Attention(CVPR2022)改进C2f.(需要看常见错误和解决方案的第五点)
使用注意点请看百度云视频.(DAttention(Vision Transformer with Deformable Attention CVPR2022)使用注意说明.)
使用ParC-Net中的ParC_Operator改进C2f.(需要看常见错误和解决方案的第五点)
使用注意点请看百度云视频.(20231031更新说明)
ultralytics/cfg/models/v8/yolov8-C2f-DWR.yaml
使用DWRSeg中的Dilation-wise Residual(DWR)模块,加强从网络高层的可扩展感受野中提取特征.
ultralytics/cfg/models/v8/yolov8-C2f-RFAConv.yaml
使用RFAConv中的RFAConv改进yolov8.
ultralytics/cfg/models/v8/yolov8-C2f-RFCBAMConv.yaml
使用RFAConv中的RFCBAMConv改进yolov8.
ultralytics/cfg/models/v8/yolov8-C2f-RFCAConv.yaml
使用RFAConv中的RFCAConv改进yolov8.
ultralytics/cfg/models/v8/yolov8-C2f-FocusedLinearAttention.yaml
使用FLatten Transformer(ICCV2023)中的FocusedLinearAttention改进C2f.(需要看常见错误和解决方案的第五点)
使用注意点请看百度云视频.(20231114版本更新说明.)
ultralytics/cfg/models/v8/yolov8-C2f-MLCA.yaml
使用Mixed Local Channel Attention 2023改进C2f.(用法请看百度云视频-20231129版本更新说明)
ultralytics/cfg/models/v8/yolov8-C2f-AKConv.yaml
使用AKConv 2023改进C2f.(用法请看百度云视频-20231129版本更新说明)
ultralytics/cfg/models/v8/yolov8-C2f-UniRepLKNetBlock.yaml
使用UniRepLKNet中的UniRepLKNetBlock改进C2f.
ultralytics/cfg/models/v8/yolov8-C2f-DRB.yaml
使用UniRepLKNet中的DilatedReparamBlock改进C2f.
ultralytics/cfg/models/v8/yolov8-C2f-AggregatedAtt.yaml
使用TransNeXt中的聚合感知注意力改进C2f.(需要看常见错误和解决方案的第五点)
ultralytics/cfg/models/v8/yolov8-C2f-SWC.yaml
使用shift-wise conv改进yolov8中的C2f.
ultralytics/cfg/models/v8/yolov8-C2f-iRMB.yaml
使用EMO ICCV2023中的iRMB改进C2f.
ultralytics/cfg/models/v8/yolov8-C2f-VSS.yaml
使用最新的Mamba架构Mamba-UNet中的VSS对C2f中的BottleNeck进行改进,使其能更有效地捕获图像中的复杂细节和更广泛的语义上下文.
ultralytics/cfg/models/v8/yolov8-C2f-LVMB.yaml
使用最新的Mamba架构Mamba-UNet中的VSS与Cross Stage Partial进行结合,使其能更有效地捕获图像中的复杂细节和更广泛的语义上下文.
ultralytics/cfg/models/v8/yolov8-RepNCSPELAN.yaml
使用YOLOV9中的RepNCSPELAN进行改进yolov8.
ultralytics/cfg/models/v8/yolov8-C2f-DynamicConv.yaml
使用CVPR2024 parameternet中的DynamicConv改进C2f.
ultralytics/cfg/models/v8/yolov8-C2f-GhostDynamicConv.yaml
使用CVPR2024 parameternet中的GhostModule改进C2f.
ultralytics/cfg/models/v8/yolov8-C2f-RVB.yaml
使用CVPR2024 RepViT中的RepViTBlock改进C2f.
ultralytics/cfg/models/v8/yolov8-DGCST.yaml
使用Lightweight Object Detection中的Dynamic Group Convolution Shuffle Transformer改进yolov8.
ultralytics/cfg/models/v8/yolov8-C2f-RetBlock.yaml
使用CVPR2024 RMT中的RetBlock改进C2f.
ultralytics/cfg/models/v8/yolov8-C2f-PKI.yaml
使用CVPR2024 PKINet中的PKIModule和CAA模块改进C2f.
ultralytics/cfg/models/v8/yolov8-RepNCSPELAN_CAA.yaml
使用CVPR2024 PKINet中的CAA模块改进RepNCSPELAN.
ultralytics/cfg/models/v8/yolov8-C2f-fadc.yaml
ultralytics/cfg/models/v8/yolov8-C2f-PPA.yaml
使用HCFNet中的Parallelized Patch-Aware Attention Module改进C2f.
ultralytics/cfg/models/v8/yolov8-fasternet-bifpn.yaml
fasternet与bifpn的结合.
其中BIFPN中有三个可选参数:
ultralytics/cfg/models/v8/yolov8-ELA-HSFPN-TADDH.yaml
使用Efficient Local Attention改进HSFPN,使用自研动态动态对齐检测头改进Head.
ultralytics/cfg/models/v8/yolov8-FDPN-TADDH.yaml
自研结构的融合.
20230620-yolov8-v1.1
20230625-yolov8-v1.2
20230627-yolov8-v1.3
20230701-yolov8-v1.4
20230703-yolov8-v1.5
20230705-yolov8-v1.6
20230714-yolov8-v1.7
20230717-yolov8-v1.8
20230723-yolov8-v1.9
20230730-yolov8-v1.10
20230730-yolov8-v1.11
20230802-yolov8-v1.11.1
20230806-yolov8-v1.12
20230808-yolov8-v1.13
20230824-yolov8-v1.14
20230830-yolov8-v1.15
20230904-yolov8-v1.16
20230909-yolov8-v1.17
20230915-yolov8-v1.18
20230916-yolov8-v1.19
20230919-yolov8-v1.19.1
20230924-yolov8-v1.20
20230927-yolov8-v1.21
20231010-yolov8-v1.22
20231020-yolov8-v1.23
20231107-yolov8-v1.24
20231114-yolov8-v1.25
20231114-yolov8-v1.26
20231129-yolov8-v1.27
20231207-yolov8-v1.28
20231217-yolov8-v1.29
20231227-yolov8-v1.30
20240104-yolov8-v1.31
20240111-yolov8-v1.32
20240116-yolov8-v1.33
20240122-yolov8-v1.34
20240203-yolov8-v1.35
20240208-yolov8-v1.36
20240216-yolov8-v1.37
20240219-yolov8-v1.38
20240222-yolov8-v1.39
20240229-yolov8-v1.40
20240303-yolov8-v1.41
20240309-yolov8-v1.42
20240314-yolov8-v1.43
20240323-yolov8-v1.44
20240330-yolov8-v1.45
20240406-yolov8-v1.46
20240408-yolov8-v1.47
20240414-yolov8-v1.48
20240420-yolov8-v1.49
20240428-yolov8-v1.50
20240501-yolov8-v1.51
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。