赞
踩
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
今天自动驾驶之心为大家分享近百篇综述,一览自动驾驶的技术发展路线!如果您有相关工作需要分享,请在文末联系我们!
2023年快要过去了,不得不说,今年的技术变更实在很快,在线高精地图、大模型、端到端自动驾驶、世界模型、Occ、Nerf这些新兴技术,慢慢走向量产的计划中,今天自动驾驶Daily就为大家盘下近百篇综述和经典论文,涉及感知、定位、融合、Occupancy、大模型、端到端、规划控制、BEV感知、数据相关等,一览自动驾驶发展路线。
所有论文出自--国内首个自动驾驶学习社区:自动驾驶之心知识星球(点我有惊喜),所有论文均可在星球内下载,更有30+学习路线,近2300人一起讨论。
Recent Advancements in End-to-End Autonomous Driving using Deep Learning: A Survey
End-to-end Autonomous Driving: Challenges and Frontiers
HDMapNet:基于语义分割的在线局部高精地图构建 (ICRA2022)
VectorMapNet:基于自回归方式的端到端矢量化地图构建(ICML2023)
MapTR : 基于固定数目点的矢量化地图构建 (ICLR2023)
MapTRv2:一种在线矢量化高清地图构建的端到端框架
PivotNet:基于动态枢纽点的矢量化地图构建 (ICCV2023)
BeMapNet:基于贝塞尔曲线的矢量化地图构建 (CVPR2023)
LATR: 无显式BEV 特征的3D车道线检测 (ICCV2023)
TopoNet: 基于图的驾驶场景拓扑推理
TopoMLP: 先检测后推理(拓扑推理 strong pipeline)
LaneGAP:连续性在线车道图构建
Neural Map Prior: 神经地图先验辅助在线建图 (CVPR2023)
MapEX:现有地图先验显著提升在线建图性能
CLIP:Learning Transferable Visual Models From Natural Language Supervision
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning
MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models
InstructGPT:Training language models to follow instructions with human feedback
ADAPT: Action-aware Driving Caption Transformer
BEVGPT:Generative Pre-trained Large Model for Autonomous Driving Prediction, Decision-Making, and Planning
DriveGPT4:Interpretable End-to-end Autonomous Driving via Large Language Model
Drive Like a Human Rethinking Autonomous Driving with Large Language Models
Driving with LLMs: Fusing Object-Level Vector Modality for Explainable Autonomous Driving
HiLM-D: Towards High-Resolution Understanding in Multimodal Large Language Models for Autonomous Driving
LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving
Planning-oriented Autonomous Driving
WEDGE A multi-weather autonomous driving dataset built from generative vision-language models
NeRF: Neural Radiance Field in 3D Vision, A Comprehensive Review
Neural Volume Rendering: NeRF And Beyond
MobileNeRF:移动端实时渲染,Nerf导出Mesh(CVPR2023)
Co-SLAM:实时视觉定位和NeRF建图(CVPR2023)
Neuralangelo:当前最好的NeRF表面重建方法(CVPR2023)
MARS:首个开源自动驾驶NeRF仿真工具(CICAI2023)
UniOcc:NeRF和3D占用网络(AD2023 Challenge)
Unisim:自动驾驶场景的传感器模拟(CVPR2023)
Grid-Centric Traffic Scenario Perception for Autonomous Driving: A Comprehensive Review
Vision-Centric BEV Perception: A Survey
Vision-RADAR fusion for Robotics BEV Detections: A Survey
Surround-View Vision-based 3D Detection for Autonomous Driving: A Survey
Delving into the Devils of Bird’s-eye-view Perception: A Review, Evaluation and Recipe
针对Lidar、Radar、视觉等数据方案进行融合感知;
A Survey on Deep Domain Adaptation for LiDAR Perception
Automatic Target Recognition on Synthetic Aperture Radar Imagery:A Survey
Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving:Datasets, Methods, and Challenges
MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving:A Review
Multi-Modal 3D Object Detection in Autonomous Driving:A Survey
Multi-modal Sensor Fusion for Auto Driving Perception:A Survey
Multi-Sensor 3D Object Box Refinement for Autonomous Driving
Multi-View Fusion of Sensor Data for Improved Perception and Prediction in Autonomous Driving
对基于单目图像、双目图像、点云数据、多模态数据的3D检测方法进行了梳理;
3D Object Detection for Autonomous Driving:A Review and New Outlooks
3D Object Detection from Images for Autonomous Driving A Survey
A Survey of Robust LiDAR-based 3D Object Detection Methods for autonomous driving
A Survey on 3D Object Detection Methods for Autonomous Driving Applications
Deep Learning for 3D Point Cloud Understanding:A Survey
Multi-Modal 3D Object Detection in Autonomous Driving:a survey
Survey and Systematization of 3D Object Detection Models and Methods
主要涉及通用目标检测任务、检测任务中的数据不均衡问题、伪装目标检测、自动驾驶领域检测任务、anchor-based、anchor-free、one-stage、two-stage方案等;
A Survey of Deep Learning for Low-Shot Object Detection
A Survey of Deep Learning-based Object Detection
Camouflaged Object Detection and Tracking:A Survey
Deep Learning for Generic Object Detection:A Survey
Imbalance Problems in Object Detection:A survey
Object Detection in 20 Years:A Survey
Object Detection in Autonomous Vehicles:Status and Open Challenges
Recent Advances in Deep Learning for Object Detection
主要涉及目标检测任务中的数据增强、小目标检测、小样本学习、autoargument等工作;
A survey on Image Data Augmentation for Deep Learning
Augmentation for small object detection
Bag of Freebies for Training Object Detection Neural Networks
Generalizing from a Few Examples:A Survey on Few-Shot
Learning Data Augmentation Strategies for Object Detection
主要对实时图像分割、视频分割、实例分割、弱监督/无监督分割、点云分割等方案展开讨论;
A Review of Point Cloud Semantic Segmentation
A SURVEY ON DEEP LEARNING METHODS FOR SEMANTIC IMAGE SEGMENTATION IN REAL-TIME
A SURVEY ON DEEP LEARNING METHODS FOR SEMANTIC
A Survey on Deep Learning Technique for Video Segmentation
A Survey on Instance Segmentation State of the art
A Survey on Label-efficient Deep Segmentation-Bridging the Gap between Weak Supervision and Dense Prediction
A Technical Survey and Evaluation of Traditional Point Cloud Clustering for LiDAR Panoptic Segmentation
Evolution of Image Segmentation using Deep Convolutional Neural Network A Survey
On Efficient Real-Time Semantic Segmentation
Unsupervised Domain Adaptation for Semantic Image Segmentation-a Comprehensive Survey
对检测+分割+关键点+车道线联合任务训练方法进行了汇总;
Cascade R-CNN
Deep Multi-Task Learning for Joint Localization, Perception, and Prediction
Mask R-CNN
Mask Scoring R-CNN
Multi-Task Multi-Sensor Fusion for 3D Object Detection
MultiTask-CenterNet
OmniDet
YOLOP
YOLO-Pose
对单目标和多目标跟踪、滤波和端到端方法进行了汇总;
Camouflaged Object Detection and Tracking:A Survey
Deep Learning for UAV-based Object Detection and Tracking:A Survey
Deep Learning on Monocular Object Pose Detection and Tracking:A Comprehensive Overview
Detection, Recognition, and Tracking:A Survey
Infrastructure-Based Object Detection and Tracking for Cooperative Driving Automation:A Survey
Recent Advances in Embedding Methods for Multi-Object Tracking:A Survey
Single Object Tracking:A Survey of Methods, Datasets, and Evaluation Metrics
Visual Object Tracking with Discriminative Filters and Siamese Networks:A Survey and Outlook
针对单目、双目深度估计方法进行了汇总,对户外常见问题与精度损失展开了讨论;
A Survey on Deep Learning Techniques for Stereo-based Depth Estimation
Deep Learning based Monocular Depth Prediction:Datasets, Methods and Applications
Monocular Depth Estimation Based On Deep Learning:An Overview
Monocular Depth Estimation:A Survey
Outdoor Monocular Depth Estimation:A Research Review
Towards Real-Time Monocular Depth Estimation for Robotics:A Survey
人体关键点检测方法汇总,对车辆关键点检测具有一定参考价值;
2D Human Pose Estimation:A Survey
A survey of top-down approaches for human pose estimation
Efficient Annotation and Learning for 3D Hand Pose Estimation:A Survey
Recent Advances in Monocular 2D and 3D Human Pose Estimation:A Deep Learning Perspective
视觉transformer、轻量级transformer方法汇总;
A Survey of Visual Transformers
A Survey on Visual Transformer
Efficient Transformers:A Survey
对2D/3D车道线检测方法进行了汇总,基于分类、检测、分割、曲线拟合等;
A Keypoint-based Global Association Network for Lane Detection
CLRNet:Cross Layer Refinement Network for Lane Detection
End-to-End Deep Learning of Lane Detection and Path Prediction for Real-Time Autonomous Driving
End-to-end Lane Detection through Differentiable Least-Squares Fitting
Keep your Eyes on the Lane:Real-time Attention-guided Lane Detection
LaneNet:Real-Time Lane Detection Networks for Autonomous Driving
Towards End-to-End Lane Detection:an Instance Segmentation Approach
Ultra Fast Structure-aware Deep Lane Detection
3D-LaneNet+:Anchor Free Lane Detection using a Semi-Local Representation
Deep Multi-Sensor Lane Detection
FusionLane:Multi-Sensor Fusion for Lane Marking Semantic Segmentation Using Deep Neural Networks
Gen-LaneNet:A Generalized and Scalable Approach for 3D Lane Detection
ONCE-3DLanes:Building Monocular 3D Lane Detection
3D-LaneNet:End-to-End 3D Multiple Lane Detection
定位与建图方案汇总;
A Survey on Active Simultaneous Localization and Mapping-State of the Art and New Frontiers
The Revisiting Problem in Simultaneous Localization and Mapping-A Survey on Visual Loop Closure Detection
From SLAM to Situational Awareness-Challenges
Simultaneous Localization and Mapping Related Datasets-A Comprehensive Survey
A Survey on Deep Neural Network CompressionChallenges, Overview, and Solutions
Pruning and Quantization for Deep Neural Network Acceleration A Survey
① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、大模型与自动驾驶、Nerf、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)
视频官网:www.zdjszx.com② 国内首个自动驾驶学习社区
近2400人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!
③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。