当前位置:   article > 正文

从近100篇综述出发,一览自动驾驶的技术发展路线!

智能驾驶感知方向的经典论文

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

今天自动驾驶之心为大家分享近百篇综述,一览自动驾驶的技术发展路线!如果您有相关工作需要分享,请在文末联系我们!

>>点击进入→自动驾驶之心【全栈算法】技术交流群  

2023年快要过去了,不得不说,今年的技术变更实在很快,在线高精地图、大模型、端到端自动驾驶、世界模型、Occ、Nerf这些新兴技术,慢慢走向量产的计划中,今天自动驾驶Daily就为大家盘下近百篇综述和经典论文,涉及感知、定位、融合、Occupancy、大模型、端到端、规划控制、BEV感知、数据相关等,一览自动驾驶发展路线。

所有论文出自--国内首个自动驾驶学习社区:自动驾驶之心知识星球点我有惊喜,所有论文均可在星球内下载,更有30+学习路线,近2300人一起讨论。

220d3f741878368d86e79c6e440581f4.png

端到端自动驾驶

  1. Recent Advancements in End-to-End Autonomous Driving using Deep Learning: A Survey

  2. End-to-end Autonomous Driving: Challenges and Frontiers

在线高精地图

  1. HDMapNet:基于语义分割的在线局部高精地图构建 (ICRA2022)

  2. VectorMapNet:基于自回归方式的端到端矢量化地图构建(ICML2023)

  3. MapTR : 基于固定数目点的矢量化地图构建 (ICLR2023)

  4. MapTRv2:一种在线矢量化高清地图构建的端到端框架

  5. PivotNet:基于动态枢纽点的矢量化地图构建 (ICCV2023)

  6. BeMapNet:基于贝塞尔曲线的矢量化地图构建 (CVPR2023)

  7. LATR:  无显式BEV 特征的3D车道线检测 (ICCV2023)

  8. TopoNet: 基于图的驾驶场景拓扑推理

  9. TopoMLP: 先检测后推理(拓扑推理 strong pipeline)

  10. LaneGAP:连续性在线车道图构建

  11. Neural Map Prior: 神经地图先验辅助在线建图 (CVPR2023)

  12. MapEX:现有地图先验显著提升在线建图性能

大模型与自动驾驶

  1. CLIP:Learning Transferable Visual Models From Natural Language Supervision

  2. BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

  3. BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models

  4. InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning

  5. MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models

  6. InstructGPT:Training language models to follow instructions with human feedback

  7. ADAPT: Action-aware Driving Caption Transformer

  8. BEVGPT:Generative Pre-trained Large Model for Autonomous Driving Prediction, Decision-Making, and Planning

  9. DriveGPT4:Interpretable End-to-end Autonomous Driving via Large Language Model

  10. Drive Like a Human Rethinking Autonomous Driving with Large Language Models

  11. Driving with LLMs: Fusing Object-Level Vector Modality for Explainable Autonomous Driving

  12. HiLM-D: Towards High-Resolution Understanding in Multimodal Large Language Models for Autonomous Driving

  13. LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving

  14. Planning-oriented Autonomous Driving

  15. WEDGE A multi-weather autonomous driving dataset built from generative vision-language models

Nerf与自动驾驶

  1. NeRF: Neural Radiance Field in 3D Vision, A Comprehensive Review

  2. Neural Volume Rendering: NeRF And Beyond

  3. MobileNeRF:移动端实时渲染,Nerf导出Mesh(CVPR2023)

  4. Co-SLAM:实时视觉定位和NeRF建图(CVPR2023)

  5. Neuralangelo:当前最好的NeRF表面重建方法(CVPR2023)

  6. MARS:首个开源自动驾驶NeRF仿真工具(CICAI2023)

  7. UniOcc:NeRF和3D占用网络(AD2023 Challenge)

  8. Unisim:自动驾驶场景的传感器模拟(CVPR2023)

Occupancy占用网络

  1. Grid-Centric Traffic Scenario Perception for Autonomous Driving: A Comprehensive Review

BEV感知

  1. Vision-Centric BEV Perception: A Survey

  2. Vision-RADAR fusion for Robotics BEV Detections: A Survey

  3. Surround-View Vision-based 3D Detection for Autonomous Driving: A Survey

  4. Delving into the Devils of Bird’s-eye-view Perception: A Review, Evaluation and Recipe

多模态融合

针对Lidar、Radar、视觉等数据方案进行融合感知;

  1. A Survey on Deep Domain Adaptation for LiDAR Perception

  2. Automatic Target Recognition on Synthetic Aperture Radar Imagery:A Survey

  3. Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving:Datasets, Methods, and Challenges

  4. MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving:A Review

  5. Multi-Modal 3D Object Detection in Autonomous Driving:A Survey

  6. Multi-modal Sensor Fusion for Auto Driving Perception:A Survey

  7. Multi-Sensor 3D Object Box Refinement for Autonomous Driving

  8. Multi-View Fusion of Sensor Data for Improved Perception and Prediction in Autonomous Driving

3D检测

对基于单目图像、双目图像、点云数据、多模态数据的3D检测方法进行了梳理;

  1. 3D Object Detection for Autonomous Driving:A Review and New Outlooks

  2. 3D Object Detection from Images for Autonomous Driving A Survey

  3. A Survey of Robust LiDAR-based 3D Object Detection Methods for autonomous driving

  4. A Survey on 3D Object Detection Methods for Autonomous Driving Applications

  5. Deep Learning for 3D Point Cloud Understanding:A Survey

  6. Multi-Modal 3D Object Detection in Autonomous Driving:a survey

  7. Survey and Systematization of 3D Object Detection Models and Methods

目标检测综述

主要涉及通用目标检测任务、检测任务中的数据不均衡问题、伪装目标检测、自动驾驶领域检测任务、anchor-based、anchor-free、one-stage、two-stage方案等;

  1. A Survey of Deep Learning for Low-Shot Object Detection

  2. A Survey of Deep Learning-based Object Detection

  3. Camouflaged Object Detection and Tracking:A Survey

  4. Deep Learning for Generic Object Detection:A Survey

  5. Imbalance Problems in Object Detection:A survey

  6. Object Detection in 20 Years:A Survey

  7. Object Detection in Autonomous Vehicles:Status and Open Challenges

  8. Recent Advances in Deep Learning for Object Detection

目标检测数据增强与不均衡问题

主要涉及目标检测任务中的数据增强、小目标检测、小样本学习、autoargument等工作;

  1. A survey on Image Data Augmentation for Deep Learning

  2. Augmentation for small object detection

  3. Bag of Freebies for Training Object Detection Neural Networks

  4. Generalizing from a Few Examples:A Survey on Few-Shot

  5. Learning Data Augmentation Strategies for Object Detection

分割综述

主要对实时图像分割、视频分割、实例分割、弱监督/无监督分割、点云分割等方案展开讨论;

  1. A Review of Point Cloud Semantic Segmentation

  2. A SURVEY ON DEEP LEARNING METHODS FOR SEMANTIC IMAGE SEGMENTATION IN REAL-TIME

  3. A SURVEY ON DEEP LEARNING METHODS FOR SEMANTIC

  4. A Survey on Deep Learning Technique for Video Segmentation

  5. A Survey on Instance Segmentation State of the art

  6. A Survey on Label-efficient Deep Segmentation-Bridging the Gap between Weak Supervision and Dense Prediction

  7. A Technical Survey and Evaluation of Traditional Point Cloud Clustering  for LiDAR Panoptic Segmentation

  8. Evolution of Image Segmentation using Deep Convolutional Neural Network A Survey

  9. On Efficient Real-Time Semantic Segmentation

  10. Unsupervised Domain Adaptation for Semantic Image Segmentation-a Comprehensive Survey

多任务学习

对检测+分割+关键点+车道线联合任务训练方法进行了汇总;

  1. Cascade R-CNN

  2. Deep Multi-Task Learning for Joint Localization, Perception, and Prediction

  3. Mask R-CNN

  4. Mask Scoring R-CNN

  5. Multi-Task Multi-Sensor Fusion for 3D Object Detection

  6. MultiTask-CenterNet

  7. OmniDet

  8. YOLOP

  9. YOLO-Pose

目标跟踪

对单目标和多目标跟踪、滤波和端到端方法进行了汇总;

  1. Camouflaged Object Detection and Tracking:A Survey

  2. Deep Learning for UAV-based Object Detection and Tracking:A Survey

  3. Deep Learning on Monocular Object Pose Detection and Tracking:A Comprehensive Overview

  4. Detection, Recognition, and Tracking:A Survey

  5. Infrastructure-Based Object Detection and Tracking for Cooperative Driving Automation:A Survey

  6. Recent Advances in Embedding Methods for Multi-Object Tracking:A Survey

  7. Single Object Tracking:A Survey of Methods, Datasets, and Evaluation Metrics

  8. Visual Object Tracking with Discriminative Filters and Siamese Networks:A Survey and Outlook

深度估计

针对单目、双目深度估计方法进行了汇总,对户外常见问题与精度损失展开了讨论;

  1. A Survey on Deep Learning Techniques for Stereo-based Depth Estimation

  2. Deep Learning based Monocular Depth Prediction:Datasets, Methods and Applications

  3. Monocular Depth Estimation Based On Deep Learning:An Overview

  4. Monocular Depth Estimation:A Survey

  5. Outdoor Monocular Depth Estimation:A Research Review

  6. Towards Real-Time Monocular Depth Estimation for Robotics:A Survey

关键点检测

人体关键点检测方法汇总,对车辆关键点检测具有一定参考价值;

  1. 2D Human Pose Estimation:A Survey

  2. A survey of top-down approaches for human pose estimation

  3. Efficient Annotation and Learning for 3D Hand Pose Estimation:A Survey

  4. Recent Advances in Monocular 2D and 3D Human Pose Estimation:A Deep Learning Perspective

Transformer综述

视觉transformer、轻量级transformer方法汇总;

  1. A Survey of Visual Transformers

  2. A Survey on Visual Transformer

  3. Efficient Transformers:A Survey

车道线检测

对2D/3D车道线检测方法进行了汇总,基于分类、检测、分割、曲线拟合等;

2D车道线

  1. A Keypoint-based Global Association Network for Lane Detection

  2. CLRNet:Cross Layer Refinement Network for Lane Detection

  3. End-to-End Deep Learning of Lane Detection and Path Prediction for Real-Time Autonomous Driving

  4. End-to-end Lane Detection through Differentiable Least-Squares Fitting

  5. Keep your Eyes on the Lane:Real-time Attention-guided Lane Detection

  6. LaneNet:Real-Time Lane Detection Networks for Autonomous Driving

  7. Towards End-to-End Lane Detection:an Instance Segmentation Approach

  8. Ultra Fast Structure-aware Deep Lane Detection

3D车道线

  1. 3D-LaneNet+:Anchor Free Lane Detection using a Semi-Local Representation

  2. Deep Multi-Sensor Lane Detection

  3. FusionLane:Multi-Sensor Fusion for Lane Marking Semantic Segmentation Using Deep Neural Networks

  4. Gen-LaneNet:A Generalized and Scalable Approach for 3D Lane Detection

  5. ONCE-3DLanes:Building Monocular 3D Lane Detection

  6. 3D-LaneNet:End-to-End 3D Multiple Lane Detection

SLAM综述

定位与建图方案汇总;

  1. A Survey on Active Simultaneous Localization and Mapping-State of the Art and New Frontiers

  2. The Revisiting Problem in Simultaneous Localization and Mapping-A Survey on Visual Loop Closure Detection

  3. From SLAM to Situational Awareness-Challenges

  4. Simultaneous Localization and Mapping Related Datasets-A Comprehensive Survey

模型量化

  1. A Survey on Deep Neural Network CompressionChallenges, Overview, and Solutions

  2. Pruning and Quantization for Deep Neural Network Acceleration A Survey

    dfe829f5ae571b23a8a4e0a5a671f8f1.png

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署大模型与自动驾驶Nerf语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

31b1428528ba4499df49570321237484.png 视频官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

近2400人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

854955a26529a20ae4850203b27d9b6c.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

5dcdb15a6e6c38c67b7be7879c8c6813.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!

06cdf1b0b90b59946d305a151368be42.jpeg

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/720959
推荐阅读
相关标签
  

闽ICP备14008679号