赞
踩
Spring AI,作为行业领导者,通过其强大、灵活的API和先进的功能,为各种行业提供了颠覆性的解决方案。在本专题中,我们将深入探讨Spring AI在各领域的应用示例,每个案例都将展示Spring AI如何满足特定需求,实现目标,并将这些LESSONS LEARNED扩展到更广泛的应用。希望这个专题能对你有所启发,更深入地理解和利用Spring AI的无限可能。
Spring框架在软件开发领域已经有超过20年的历史,自Spring Boot 1.0版本发布以来已有10年。现在,无人会质疑,Spring创造了一种独特的风格,使开发者从重复任务中解放出来,专注于提供业务价值。随着时间的推移,Spring的技术深度不断增强,涵盖了广泛的开发领域和技术。另一方面,随着更多的专用解决方案得到尝试,概念的验证被创建,并最终在项目的保护下得到推广,其技术广度不断扩大。
Spring AI 项目就是一个实例,根据其参考文档,该项目旨在简化当生成式人工智能层需要被引入应用时的开发过程。开发者再次从重复任务中解放出来,可以直接通过简单的接口与预先训练的模型(包含实际处理算法)进行交互。
通过直接或者通过 Spring AI 以编程方式与生成式预训练的转换器(GPTs)交互,用户(开发者)不需要拥有广泛的机器学习知识。但作为一名工程师,我强烈认为,即使这些开发者工具可以方便快捷地使用并产生结果,我建议我们需要克制自己,警觉观察,尝试首先理解基本概念。此外,通过遵循这条路径,产出的结果可能会更有价值。
本文介绍了如何将 Spring AI 集成到Spring Boot应用,与OpenAI进行编程交互。我们假定prompt设计一般来说是一种最先进的活动。因此,在实验过程中使用的prompt非常有教导性,但应用性不大。此处的重点是通讯接口,即 Spring AI API。
首先要明确自身使用GPT解决方案的理由,除了希望提供更好的质量,节省时间和降低成本。
生成式人工智能据说擅长执行大量耗时的任务,速度更快,效率更高,生成结果。此外,如果这些结果进一步经过经验丰富且智慧的人类验证,获得有用结果的可能性会增加。
接下来,应抵制立即跳入实施的诱惑,至少要花一些时间熟悉一下一般概念。对生成式人工智能概念的深入探索远远超出了本文的范围。然而,出现在交互中的“主要角色”在下面简要概述。
舞台 - 生成式人工智能是人工智能的一部分
输入 - 提供的数据(输入)
输出 - 计算结果(输出)
大型语言模型(LLM)- 根据解释的输入产生输出的微调算法
提示词- 一种最先进的接口,通过它将输入传入模型
提示词模板 - 允许构造结构化参数化提示的组件
令牌 - 算法在内部将输入转换为令牌,然后使用这些令牌来编译结果,并最终从中构造输出
模型的环境窗口 - 模型限制每次调用的令牌数量的阈值(通常,使用的令牌越多,操作就越昂贵)
最后,可以开始实施,但随着实施的进行,建议回顾和优化前两个步骤。
在本次练习中,我们请求如下:
- Write {count = three} reasons why people in {location = Romania} should consider a {job = software architect} job.
- These reasons need to be short, so they fit on a poster.
- For instance, "{job} jobs are rewarding.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。