赞
踩
在MATLAB中,quadprog是具有线性约束的二次目标函数的求解器。
quadprog 求由下式指定的问题的最小值
H、A 和 Aeq 是矩阵,f、b、beq、lb、ub 和 x 是向量。
其具体用法为:
x = quadprog(H,f)
x = quadprog(H,f,A,b)
x = quadprog(H,f,A,b,Aeq,beq)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub)
x =quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)
x =quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
x = quadprog(problem)
[x,fval] = quadprog()
[x,fval,exitflag,output] = quadprog()
[x,fval,exitflag,output,lambda] = quadprog(___)
当解决一个具有线性约束的二次规划问题时:
要求解此问题,首先输入系数矩阵。
使用MATLAB语句为:
H = [1 -1; -1 2];
f = [-2; -6];
A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
[x,fval,exitflag,output,lambda] = ...
quadprog(H,f,A,b);
x,fval %打印结果
进行库文件的安装
pip install cvxopt==1.2.6 cvxpy==1.1.11 Cython==0.29.22 ecos==2.0.7.post1 numpy osqp==0.6.2.post0 qdldl==0.1.5.post0 qpsolvers==1.7.0 quadprog==0.1.8 scipy scs==2.1.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
from numpy import array
from qpsolvers import solve_qp
H=array([[1.,-1.],[-1.,2.]])
f=array([[-2.],[-6.]]).reshape((2,))
L=array([[1.,1.],[-1.,2.],[2.,1.]])
k=array([[2.],[2.],[3.]]).reshape((3,))
x = solve_qp(H, f, L,k)
print("QP solution: x = {}".format(x))
输出
QP solution: x = [0.66666667 1.33333333]
(https://blog.csdn.net/u013421629/article/details/108358409)
import numpy as np import cvxopt def quadprog(H, f, L=None, k=None, Aeq=None, beq=None, lb=None, ub=None): """ Input: Numpy arrays, the format follows MATLAB quadprog function: https://www.mathworks.com/help/optim/ug/quadprog.html Output: Numpy array of the solution """ n_var = H.shape[1] P = cvxopt.matrix(H, tc='d') q = cvxopt.matrix(f, tc='d') if L is not None or k is not None: assert(k is not None and L is not None) if lb is not None: L = np.vstack([L, -np.eye(n_var)]) k = np.vstack([k, -lb]) if ub is not None: L = np.vstack([L, np.eye(n_var)]) k = np.vstack([k, ub]) L = cvxopt.matrix(L, tc='d') k = cvxopt.matrix(k, tc='d') if Aeq is not None or beq is not None: assert(Aeq is not None and beq is not None) Aeq = cvxopt.matrix(Aeq, tc='d') beq = cvxopt.matrix(beq, tc='d') sol = cvxopt.solvers.qp(P, q, L, k, Aeq, beq) return np.array(sol['x']) if __name__ == '__main__': H=np.array([[1,-1],[-1,2]]) print(H) f=np.array([[-2],[-6]]) print(f) L=np.array([[1,1],[-1,2],[2,1]]) print(L) k=np.array([[2],[2],[3]]) print(k) res=quadprog(H, f, L,k) print(res)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。