当前位置:   article > 正文

书生·浦语大模型实战营之茴香豆:搭建你的 RAG 智能助理_下载 huixiangdou 语料

下载 huixiangdou 语料

书生·浦语大模型实战营之茴香豆:搭建你的 RAG 智能助理

在这里插入图片描述

RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。

在这里插入图片描述

RAG 能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。本次课程选用的茴香豆应用,就应用了 RAG 技术,可以快速、高效的搭建自己的知识领域助手。
https://github.com/InternLM/HuixiangDou

在这里插入图片描述
论文
https://arxiv.org/pdf/2401.08772.pdf

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

RAG 效果比对
如图所示,由于茴香豆是一款比较新的应用, InternLM2-Chat-7B 训练数据库中并没有收录到它的相关信息。图中关于 huixiangdou 的 3 轮问答均未给出准确的答案。
在这里插入图片描述

未对 InternLM2-Chat-7B 进行任何增训的情况下,通过 RAG 技术实现的新增知识问答。

在这里插入图片描述

配置基础环境

在 Intern Studio 服务器上部署茴香豆
v
进入开发机后,从官方环境复制运行 InternLM 的基础环境,命名为 InternLM2_Huixiangdou,在命令行模式下运行

studio-conda -o internlm-base -t InternLM2_Huixiangdou

  • 1
  • 2

运行 conda 命令,激活 InternLM2_Huixiangdou python 虚拟环境

conda activate InternLM2_Huixiangdou

  • 1
  • 2

在这里插入图片描述

在这里插入图片描述

下载基础文件
复制茴香豆所需模型文件,为了减少下载和避免 HuggingFace 登录问题,所有作业和教程涉及的模型都已经存放在 Intern Studio 开发机共享文件中。本教程选用 InternLM2-Chat-7B 作为基础模型。

# 创建模型文件夹
cd /root && mkdir models

# 复制BCE模型
ln -s /root/share/new_models/maidalun1020/bce-embedding-base_v1 /root/models/bce-embedding-base_v1
ln -s /root/share/new_models/maidalun1020/bce-reranker-base_v1 /root/models/bce-reranker-base_v1

# 复制大模型参数(下面的模型,根据作业进度和任务进行**选择一个**就行)
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在这里插入图片描述

下载安装茴香豆

cd /root
# 下载 repo
git clone https://github.com/internlm/huixiangdou && cd huixiangdou
git checkout 447c6f7e68a1657fce1c4f7c740ea1700bde0440

  • 1
  • 2
  • 3
  • 4
  • 5

在这里插入图片描述

安装茴香豆运行所需依赖。
在这里插入图片描述
在这里插入图片描述

使用茴香豆搭建 RAG 助手

2.1 修改配置文件
用已下载模型的路径替换 /root/huixiangdou/config.ini 文件中的默认模型,需要修改 3 处模型地址,分别是:

sed -i '6s#.*#embedding_model_path = "/root/models/bce-embedding-base_v1"#' /root/huixiangdou/config.ini

  • 1
  • 2

用于检索的重排序模型

sed -i '7s#.*#reranker_model_path = "/root/models/bce-reranker-base_v1"#' /root/huixiangdou/config.ini
  • 1

和本次选用的大模型

sed -i '29s#.*#local_llm_path = "/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b"#' /root/huixiangdou/config.ini
  • 1

命令行输入下面的命令,修改用于向量数据库和词嵌入的模型

sed -i '6s#.*#embedding_model_path = "/root/models/bce-embedding-base_v1"#' /root/huixiangdou/config.ini
sed -i '7s#.*#reranker_model_path = "/root/models/bce-reranker-base_v1"#' /root/huixiangdou/config.ini
sed -i '29s#.*#local_llm_path = "/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b"#' /root/huixiangdou/config.ini
  • 1
  • 2
  • 3

在这里插入图片描述

在这里插入图片描述

2.2 创建知识库
本示例中,使用 InternLM 的 Huixiangdou 文档作为新增知识数据检索来源,在不重新训练的情况下,打造一个 Huixiangdou 技术问答助手。

首先,下载 Huixiangdou 语料

cd /root/huixiangdou && mkdir repodir

git clone https://github.com/internlm/huixiangdou --depth=1 repodir/huixiangdou

  • 1
  • 2
  • 3
  • 4

在这里插入图片描述
提取知识库特征,创建向量数据库。数据库向量化的过程应用到了 LangChain 的相关模块,默认嵌入和重排序模型调用的网易 BCE 双语模型,如果没有在 config.ini 文件中指定本地模型路径,茴香豆将自动从 HuggingFace 拉取默认模型。

除了语料知识的向量数据库,茴香豆建立接受和拒答两个向量数据库,用来在检索的过程中更加精确的判断提问的相关性,这两个数据库的来源分别是:

接受问题列表,希望茴香豆助手回答的示例问题
存储在 huixiangdou/resource/good_questions.json 中
拒绝问题列表,希望茴香豆助手拒答的示例问题
存储在 huixiangdou/resource/bad_questions.json 中
其中多为技术无关的主题或闲聊
如:“nihui 是谁”, “具体在哪些位置进行修改?”, “你是谁?”, “1+1”
运行下面的命令,增加茴香豆相关的问题到接受问题示例中:

cd /root/huixiangdou
mv resource/good_questions.json resource/good_questions_bk.json

echo '[
    "mmpose中怎么调用mmyolo接口",
    "mmpose实现姿态估计后怎么实现行为识别",
    "mmpose执行提取关键点命令不是分为两步吗,一步是目标检测,另一步是关键点提取,我现在目标检测这部分的代码是demo/topdown_demo_with_mmdet.py demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth   现在我想把这个mmdet的checkpoints换位yolo的,那么应该怎么操作",
    "在mmdetection中,如何同时加载两个数据集,两个dataloader",
    "如何将mmdetection2.28.2的retinanet配置文件改为单尺度的呢?",
    "1.MMPose_Tutorial.ipynb、inferencer_demo.py、image_demo.py、bottomup_demo.py、body3d_pose_lifter_demo.py这几个文件和topdown_demo_with_mmdet.py的区别是什么,\n2.我如果要使用mmdet是不是就只能使用topdown_demo_with_mmdet.py文件,",
    "mmpose 测试 map 一直是 0 怎么办?",
    "如何使用mmpose检测人体关键点?",
    "我使用的数据集是labelme标注的,我想知道mmpose的数据集都是什么样式的,全都是单目标的数据集标注,还是里边也有多目标然后进行标注",
    "如何生成openmmpose的c++推理脚本",
    "mmpose",
    "mmpose的目标检测阶段调用的模型,一定要是demo文件夹下的文件吗,有没有其他路径下的文件",
    "mmpose可以实现行为识别吗,如果要实现的话应该怎么做",
    "我在mmyolo的v0.6.0 (15/8/2023)更新日志里看到了他新增了支持基于 MMPose 的 YOLOX-Pose,我现在是不是只需要在mmpose/project/yolox-Pose内做出一些设置就可以,换掉demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py 改用mmyolo来进行目标检测了",
    "mac m1从源码安装的mmpose是x86_64的",
    "想请教一下mmpose有没有提供可以读取外接摄像头,做3d姿态并达到实时的项目呀?",
    "huixiangdou 是什么?",
    "使用科研仪器需要注意什么?",
    "huixiangdou 是什么?",
    "茴香豆 是什么?",
    "茴香豆 能部署到微信吗?",
    "茴香豆 怎么应用到飞书",
    "茴香豆 能部署到微信群吗?",
    "茴香豆 怎么应用到飞书群",
    "huixiangdou 能部署到微信吗?",
    "huixiangdou 怎么应用到飞书",
    "huixiangdou 能部署到微信群吗?",
    "huixiangdou 怎么应用到飞书群",
    "huixiangdou",
    "茴香豆",
    "茴香豆 有哪些应用场景",
    "huixiangdou 有什么用",
    "huixiangdou 的优势有哪些?",
    "茴香豆 已经应用的场景",
    "huixiangdou 已经应用的场景",
    "huixiangdou 怎么安装",
    "茴香豆 怎么安装",
    "茴香豆 最新版本是什么",
    "茴香豆 支持哪些大模型",
    "茴香豆 支持哪些通讯软件",
    "config.ini 文件怎么配置",
    "remote_llm_model 可以填哪些模型?"
]' > /root/huixiangdou/resource/good_questions.json

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

在这里插入图片描述

再创建一个测试用的问询列表,用来测试拒答流程是否起效:

cd /root/huixiangdou

echo '[
"huixiangdou 是什么?",
"你好,介绍下自己"
]' > ./test_queries.json

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在这里插入图片描述

在确定好语料来源后,运行下面的命令,创建 RAG 检索过程中使用的向量数据库:

# 创建向量数据库存储目录
cd /root/huixiangdou && mkdir workdir 

# 分别向量化知识语料、接受问题和拒绝问题中后保存到 workdir
python3 -m huixiangdou.service.feature_store --sample ./test_queries.json

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

向量数据库的创建需要等待一小段时间,过程约占用 1.6G 显存。

完成后,Huixiangdou 相关的新增知识就以向量数据库的形式存储在 workdir 文件夹下。

检索过程中,茴香豆会将输入问题与两个列表中的问题在向量空间进行相似性比较,判断该问题是否应该回答,避免群聊过程中的问答泛滥。确定的回答的问题会利用基础模型提取关键词,在知识库中检索 top K 相似的 chunk,综合问题和检索到的 chunk 生成答案

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.3 运行茴香豆知识助手
我们已经提取了知识库特征,并创建了对应的向量数据库。现在,让我们来测试一下效果:

命令行运行:

# 填入问题
sed -i '74s/.*/    queries = ["huixiangdou 是什么?", "茴香豆怎么部署到微信群", "今天天气怎么样?"]/' /root/huixiangdou/huixiangdou/main.py

# 运行茴香豆
cd /root/huixiangdou/
python3 -m huixiangdou.main --standalone

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在这里插入图片描述

(InternLM2_Huixiangdou) root@intern-studio-061925:~/huixiangdou# cd /root/huixiangdou/
(InternLM2_Huixiangdou) root@intern-studio-061925:~/huixiangdou# python3 -m huixiangdou.main --standalone
/root/.conda/envs/InternLM2_Huixiangdou/lib/python3.10/site-packages/langchain/embeddings/__init__.py:29: LangChainDeprecationWarning: Importing embeddings from langchain is deprecated. Importing from langchain will no longer be supported as of langchain==0.2.0. Please import from langchain-community instead:

`from langchain_community.embeddings import HuggingFaceEmbeddings`.

To install langchain-community run `pip install -U langchain-community`.
  warnings.warn(
/root/.conda/envs/InternLM2_Huixiangdou/lib/python3.10/site-packages/langchain/embeddings/__init__.py:29: LangChainDeprecationWarning: Importing embeddings from langchain is deprecated. Importing from langchain will no longer be supported as of langchain==0.2.0. Please import from langchain-community instead:

`from langchain_community.embeddings import HuggingFaceEmbeddings`.

To install langchain-community run `pip install -U langchain-community`.
  warnings.warn(
2024-04-07 22:04:27.498 | INFO     | __main__:run:180 - waiting for server to be ready..
2024-04-07 22:04:30.501 | INFO     | __main__:run:180 - waiting for server to be ready..
2024-04-07 22:04:33.596 | INFO     | __main__:run:180 - waiting for server to be ready..
2024-04-07 22:04:36.599 | INFO     | __main__:run:180 - waiting for server to be ready..
04/07/2024 22:04:39 - [INFO] -accelerate.utils.modeling->>>    We will use 90% of the memory on device 0 for storing the model, and 10% for the buffer to avoid OOM. You can set `max_memory` in to a higher value to use more memory (at your own risk).
Loading checkpoint shards:   0%|                                                                                | 0/8 [00:00<?, ?it/s]2024-04-07 22:04:39.602 | INFO     | __main__:run:180 - waiting for server to be ready..
Loading checkpoint shards:  12%|█████████                                                               | 1/8 [00:02<00:17,  2.53s/it]2024-04-07 22:04:42.605 | INFO     | __main__:run:180 - waiting for server to be ready..
Loading checkpoint shards:  25%|██████████████████                                                      | 2/8 [00:05<00:14,  2.50s/it]2024-04-07 22:04:45.608 | INFO     | __main__:run:180 - waiting for server to be ready..
Loading checkpoint shards:  38%|███████████████████████████                                             | 3/8 [00:07<00:12,  2.56s/it]2024-04-07 22:04:48.611 | INFO     | __main__:run:180 - waiting for server to be ready..
Loading checkpoint shards:  50%|████████████████████████████████████                                    | 4/8 [00:10<00:10,  2.56s/it]2024-04-07 22:04:51.614 | INFO     | __main__:run:180 - waiting for server to be ready..
Loading checkpoint shards:  62%|█████████████████████████████████████████████                           | 5/8 [00:12<00:07,  2.59s/it]2024-04-07 22:04:54.617 | INFO     | __main__:run:180 - waiting for server to be ready..
Loading checkpoint shards:  75%|██████████████████████████████████████████████████████                  | 6/8 [00:15<00:05,  2.59s/it]2024-04-07 22:04:57.620 | INFO     | __main__:run:180 - waiting for server to be ready..
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████| 8/8 [00:20<00:00,  2.54s/it]
======== Running on http://0.0.0.0:8888 ========
(Press CTRL+C to quit)
2024-04-07 22:05:00.623 | INFO     | __main__:run:187 - Hybrid LLM Server start.
2024-04-07 22:05:00.625 | INFO     | __main__:run:192 - Config loaded.
2024-04-07 22:05:00.626 | INFO     | huixiangdou.service.retriever:__init__:202 - loading test2vec and rerank models
04/07/2024 22:05:05 - [INFO] -sentence_transformers.SentenceTransformer->>>    Load pretrained SentenceTransformer: /root/models/bce-embedding-base_v1
/root/.conda/envs/InternLM2_Huixiangdou/lib/python3.10/site-packages/torch/_utils.py:776: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
  return self.fget.__get__(instance, owner)()
04/07/2024 22:05:13 - [INFO] -BCEmbedding.models.RerankerModel->>>    Loading from `/root/models/bce-reranker-base_v1`.
04/07/2024 22:05:15 - [INFO] -BCEmbedding.models.RerankerModel->>>    Execute device: cuda;      gpu num: 1;     use fp16: True
04/07/2024 22:05:15 - [INFO] -faiss.loader->>>    Loading faiss with AVX2 support.
04/07/2024 22:05:15 - [INFO] -faiss.loader->>>    Could not load library with AVX2 support due to:
ModuleNotFoundError("No module named 'faiss.swigfaiss_avx2'")
04/07/2024 22:05:15 - [INFO] -faiss.loader->>>    Loading faiss.
04/07/2024 22:05:15 - [INFO] -faiss.loader->>>    Successfully loaded faiss.
/root/.conda/envs/InternLM2_Huixiangdou/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:492: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.8` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
  warnings.warn(
/root/.conda/envs/InternLM2_Huixiangdou/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:497: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.8` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`.
  warnings.warn(
/root/.conda/envs/InternLM2_Huixiangdou/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:509: UserWarning: `do_sample` is set to `False`. However, `top_k` is set to `1` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_k`.
  warnings.warn(
2024-04-07 22:05:19.537 | INFO     | huixiangdou.service.llm_server_hybrid:generate_response:519 - ('“huixiangdou 是什么?”\n请仔细阅读以上内容,判断句子是否是个有主题的疑问句,结果用 0~10 表示。直接提供得分不要解释。\n判断标准:有主语谓语宾语并且是疑问句得 10 分;缺少主谓宾扣分;陈述句直接得 0 分;不是疑问句直接得 0 分。直接提供得分不要解释。', '根据您提供的内容,我无法判断"huixiangdou 是什么?" 这个句子的主题,因为它不包含任何有关于主题的信息。所以,我无法给出 0~10 的分数。请提供更具体的信息,以便我能够更准确地评估。')
2024-04-07 22:05:19.537 | DEBUG    | huixiangdou.service.llm_server_hybrid:generate_response:522 - Q:有主题的疑问句,结果用 010 表示。直接提供得分不要解释。
判断标准:有主语谓语宾语并且是疑问句得 10 分;缺少主谓宾扣分;陈述句直接得 0 分;不是疑问句直接得 0 分。直接提供得分不要解释 A:根据您提供的内容,我无法判断"huixiangdou 是什么?" 这个句子的主题,因为它不包含任何有关于主题的信息。所以,我无法给出 010 的分数。请提供更具体的信息,以便我能够更准确地评估。             remote local timecost 3.8726747035980225
04/07/2024 22:05:19 - [INFO] -aiohttp.access->>>    127.0.0.1 [07/Apr/2024:22:05:15 +0800] "POST /inference HTTP/1.1" 200 661 "-" "python-requests/2.31.0"
2024-04-07 22:05:20.198 | INFO     | huixiangdou.service.llm_server_hybrid:generate_response:519 - ('告诉我这句话的主题,直接说主题不要解释:“huixiangdou 是什么?”', '主题:"huixiangdou" 的含义或定义。')
2024-04-07 22:05:20.198 | DEBUG    | huixiangdou.service.llm_server_hybrid:generate_response:522 - Q:告诉我这句话的主题,直接说主题不要解释:“huixiangdou 是什么? A:主题:"huixiangdou" 的含义或定义。               remote local timecost 0.6537926197052002
04/07/2024 22:05:20 - [INFO] -aiohttp.access->>>    127.0.0.1 [07/Apr/2024:22:05:19 +0800] "POST /inference HTTP/1.1" 200 246 "-" "python-requests/2.31.0"
You're using a XLMRobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
2024-04-07 22:05:22.347 | INFO     | huixiangdou.service.retriever:query:158 - target README.md file length 15394
2024-04-07 22:05:22.348 | DEBUG    | huixiangdou.service.retriever:query:185 - query:主题:"huixiangdou" 的含义或定义。 top1 file:README.md
2024-04-07 22:05:23.087 | INFO     | huixiangdou.service.llm_server_hybrid:generate_response:519 - ('问题:“huixiangdou 是什么?”\n材料:“ <img alt="youtube" src="https://img.shields.io/badge/youtube-black?logo=youtube&logocolor=red" />\n</a>\n<a href="https://www.bilibili.com/video/bv1s2421n7mn" target="_blank">\n<img alt="bilibili" src="https://img.shields.io/badge/bilibili-pink?logo=bilibili&logocolor=white" />\n</a>\n<a href="https://discord.gg/tw4zbpzz" target="_blank">\n<img alt="discord" src="https://img.shields.io/badge/discord-red?logo=discord&logocolor=white" />\n</a>\n</div>  \n</div>  \nhuixiangdou is a **group chat** assistant based on llm (large language model).  \nadvantages:  \n1. design a two-stage pipeline of rejection and response to cope with group chat scenario, answer user questions without message flooding, see arxiv2401.08772”\n请仔细阅读以上内容,判断问题和材料的关联度,用0~10表示。判断标准:非常相关得 10 分;完全没关联得 0 分。直接提供得分不要解释。\n', '8')
2024-04-07 22:05:23.087 | DEBUG    | huixiangdou.service.llm_server_hybrid:generate_response:522 - Q:flooding, see arxiv2401.08772”
请仔细阅读以上内容,判断问题和材料的关联度,用010表示。判断标准:非常相关得 10 分;完全没关联得 0 分。直接提供得分不要解释。 A:8    remote local timecost 0.7367064952850342
04/07/2024 22:05:23 - [INFO] -aiohttp.access->>>    127.0.0.1 [07/Apr/2024:22:05:22 +0800] "POST /inference HTTP/1.1" 200 171 "-" "python-requests/2.31.0"
2024-04-07 22:05:23.089 | WARNING  | huixiangdou.service.llm_client:generate_response:95 - disable remote LLM while choose remote LLM, auto fixed
2024-04-07 22:05:47.063 | INFO     | huixiangdou.service.llm_server_hybrid:generate_response:519 - ('材料:“ <img alt="youtube" src="https://img.shields.io/badge/youtube-black?logo=youtube&logocolor=red" />\n</a>\n<a href="https://www.bilibili.com/video/bv1s2421n7mn" target="_blank">\n<img alt="bilibili" src="https://img.shields.io/badge/bilibili-pink?logo=bilibili&logocolor=white" />\n</a>\n<a href="https://discord.gg/tw4zbpzz" target="_blank">\n<img alt="discord" src="https://img.shields.io/badge/discord-red?logo=discord&logocolor=white" />\n</a>\n</div>  \n</div>  \nhuixiangdou is a **group chat** assistant based on llm (large language model).  \nadvantages:  \n1. design a two-stage pipeline of rejection and response to cope with group chat scenario, answer user questions without message flooding, see arxiv2401.08772\nEnglish | [简体中文](README_zh.md)\n<div align="center">\n<img src="resource/logo_black.svg" width="555px"/>\n<div align="center">\n <a href="resource/figures/wechat.jpg" target="_blank">\n <img alt="Wechat" src="https://img.shields.io/badge/wechat-robot%20inside-brightgreen?logo=wechat&logoColor=white" />\n </a>\n <a href="https://arxiv.org/abs/2401.08772" target="_blank">\n <img alt="Arxiv" src="https://img.shields.io/badge/arxiv-paper%20-darkred?logo=arxiv&logoColor=white" />\n </a>\n <a href="https://pypi.org/project/huixiangdou" target="_blank">\n <img alt="PyPI" src="https://img.shields.io/badge/PyPI-install-blue?logo=pypi&logoColor=white" />\n </a>\n <a href="https://youtu.be/ylXrT-Tei-Y" target="_blank">\n <img alt="YouTube" src="https://img.shields.io/badge/YouTube-black?logo=youtube&logoColor=red" />\n </a>\n <a href="https://www.bilibili.com/video/BV1S2421N7mn" target="_blank">\n <img alt="BiliBili" src="https://img.shields.io/badge/BiliBili-pink?logo=bilibili&logoColor=white" />\n </a>\n <a href="https://discord.gg/TW4ZBpZZ" target="_blank">\n <img alt="discord" src="https://img.shields.io/badge/discord-red?logo=discord&logoColor=white" />\n </a>\n</div>\n</div>\nHuixiangDou is a **group chat** assistant based on LLM (Large Language Model). \nAdvantages:\n1. Design a two-stage pipeline of rejection and response to cope with group chat scenario, answer user questions without message flooding, see [arxiv2401.08772](https://arxiv.org/abs/2401.08772)\n2. Low cost, requiring only 1.5GB memory and no need for training\n3. Offers a complete suite of Web, Android, and pipeline source code, which is industrial-grade and commercially viable\nCheck out the [scenes in which HuixiangDou are running](./huixiangdou-inside.md) and join [WeChat Group](resource/figures/wechat.jpg) to try AI assistant inside.\nIf this helps you, please give it a star ⭐\n# 
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/1009434
推荐阅读
相关标签