当前位置:   article > 正文

时序预测 | Matlab实现CNN-XGBoost卷积神经网络结合极限梯度提升树时间序列预测_xgboost预测

xgboost预测

时序预测 | Matlab实现CNN-XGBoost卷积神经网络结合极限梯度提升树时间序列预测

预测效果

1
2

3

基本介绍

Matlab实现CNN-XGBoost卷积神经网络结合极限梯度提升树时间序列预测(完整源码和数据)
1.data为数据集,单变量时间序列数据集。
2.CNN_XGBoostTS.m为主程序文件,其他为函数文件,无需运行;
3.评价指标R2、MAE、MAPE、MSE、RMSE;

程序设计

options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 300, ...                  % 最大训练次数 300
    'InitialLearnRate', 1e-2, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 200, ...        % 经过200次训练后 学习率为 0.01 * 0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Plots', 'training-progress', ...      % 画出曲线
    'Verbose', false);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/127179100
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/112556
推荐阅读
相关标签
  

闽ICP备14008679号