当前位置:   article > 正文

imu姿态融合基础_imu 姿态融合算法

imu 姿态融合算法

姿态角(Euler角)pitch yaw roll
飞行器的姿态角并不是指哪个角度,是三个角度的统称。
它们是:俯仰、滚转、偏航。你可以想象是飞机围绕XYZ三个轴分别转动形成的夹角。

地面坐标系(earth-surface inertial reference frame)Sg--------OXgYgZg
<ignore_js_op> 
①在地面上选一点Og
②使Xg轴在水平面内并指向某一方向
③Zg轴垂直于地面并指向地心(重力方向)
④Yg轴在水平面内垂直于Xg轴,其指向按右手定则确定

机体坐标系(Aircraft-body coordinate frame)Sb-------OXYZ
<ignore_js_op> 

①原点O取在飞机质心处,坐标系与飞机固连
②x轴在飞机对称平面内并平行于飞机的设计轴线指向机头
③y轴垂直于飞机对称平面指向机身右方
④z轴在飞机对称平面内,与x轴垂直并指向机身下方

欧拉角/姿态角(Euler Angle)
<ignore_js_op> 
<ignore_js_op> 

机体坐标系与地面坐标系的关系是三个Euler角,反应了飞机相对地面的姿态。
俯仰角θ(pitch):机体坐标系X轴与水平面的夹角。当X轴的正半轴位于过坐标原点的水平面之上(抬头)时,俯仰角为正,否则为负。
<ignore_js_op> 

偏航角ψ(yaw):
机体坐标系xb轴在水平面上投影与地面坐标系xg轴(在水平面上,指向目标为正)之间的夹角,由xg轴逆时针转至机体xb的投影线时,偏航角为正,即机头右偏航为正,反之为负。
<ignore_js_op> 

滚转角Φ(roll):机体坐标系zb轴与通过机体xb轴的铅垂面间的夹角,机体向右滚为正,反之为负。
<ignore_js_op>

 

 

首先要明确,MPU6050 是一款姿态传感器,使用它就是为了得到待测物体(如四轴、平衡小车) x、y、z 轴的倾角(俯仰角 Pitch、滚转角 Roll、偏航角 Yaw) 。我们通过 I2C 读取到 MPU6050 的六个数据(三轴加速度 AD 值、三轴角速度 AD 值)经过姿态融合后就可以得到 Pitch、Roll、Yaw 角。

本帖主要介绍三种姿态融合算法:四元数法 、一阶互补算法和卡尔曼滤波算法。




一、四元数法

关于四元数的一些概念和计算就不写上来了,我也不懂。我能告诉你的是:通过下面的算法,可以把六个数据转化成四元数(q0、q1、q2、q3),然后四元数转化成欧拉角(P、R、Y 角)。



        虽然 MPU6050 自带的 DMP库可以直接输出四元数,减轻 STM32 的运算负担, 这里在此没有使用,因为我是用 STM32 的硬件 I2C 读取 MPU6050 数据的(http://bbs.elecfans.com/forum.ph ... 4&page=1#pid3625735),DMP库需要对 I2C 函数进行修改,如 DMP 库中的 I2C 写:i2c_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, &(data[0]));有4个输入变量,而 STM32 硬件 I2C 的 I2C 写为:void MPU6050_I2C_ByteWrite(u8 slaveAddr, u8 pBuffer, u8 writeAddr),只有 3 个输入量(这之间的差异好像是由于 MPU6050 的 DMP 库是针对 MSP430 单片机写的),所以必须进行修改,但是改固件库是一件很痛苦的事,你们应该都懂。当然,如果你用模拟 I2C 的话,是容易实现的,网上的 DMP 移植几乎都是基于模拟 I2C 的。

 
复制代码



#include<math.h>

#include "stm32f10x.h"

//---------------------------------------------------------------------------------------------------

// 变量定义

 

#define Kp 100.0f                        // 比例增益支配率收敛到加速度计/磁强计

#define Ki 0.002f                // 积分增益支配率的陀螺仪偏见的衔接

#define halfT 0.001f                // 采样周期的一半

 

float q0 = 1, q1 = 0, q2 = 0, q3 = 0;          // 四元数的元素,代表估计方向

float exInt = 0, eyInt = 0, ezInt = 0;        // 按比例缩小积分误差

 

float Yaw,Pitch,Roll;  //偏航角,俯仰角,翻滚角



void IMUupdate(float gx, float gy, float gz, float ax, float ay, float az)

{

        float norm;

        float vx, vy, vz;

        float ex, ey, ez;  

 

        // 测量正常化

        norm = sqrt(ax*ax + ay*ay + az*az);      

        ax = ax / norm;                   //单位化

        ay = ay / norm;

        az = az / norm;      

 

        // 估计方向的重力

        vx = 2*(q1*q3 - q0*q2);

        vy = 2*(q0*q1 + q2*q3);

        vz = q0*q0 - q1*q1 - q2*q2 + q3*q3;

 

        // 错误的领域和方向传感器测量参考方向之间的交叉乘积的总和

        ex = (ay*vz - az*vy);

        ey = (az*vx - ax*vz);

        ez = (ax*vy - ay*vx);

 

        // 积分误差比例积分增益

        exInt = exInt + ex*Ki;

        eyInt = eyInt + ey*Ki;

        ezInt = ezInt + ez*Ki;

 

        // 调整后的陀螺仪测量

        gx = gx + Kp*ex + exInt;

        gy = gy + Kp*ey + eyInt;

        gz = gz + Kp*ez + ezInt;

 

        // 整合四元数率和正常化

        q0 = q0 + (-q1*gx - q2*gy - q3*gz)*halfT;

        q1 = q1 + (q0*gx + q2*gz - q3*gy)*halfT;

        q2 = q2 + (q0*gy - q1*gz + q3*gx)*halfT;

        q3 = q3 + (q0*gz + q1*gy - q2*gx)*halfT;  

 

        // 正常化四元

        norm = sqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3);

        q0 = q0 / norm;

        q1 = q1 / norm;

        q2 = q2 / norm;

        q3 = q3 / norm;

 

        Pitch  = asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3; // pitch ,转换为度数

        Roll = atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)* 57.3; // rollv

        //Yaw = atan2(2*(q1*q2 + q0*q3),q0*q0+q1*q1-q2*q2-q3*q3) * 57.3;                //此处没有价值,注掉

}




      要注意的的是,四元数算法输出的是三个量 Pitch、Roll 和 Yaw,运算量很大。而像平衡小车这样的例子只需要一个角(Pitch 或 Roll )就可以满足工作要求,个人觉得做平衡小车最好不用四元数法。




二、一阶互补算法

       MPU6050 可以输出三轴的加速度和角速度。通过加速度和角速度都可以得到 Pitch 和 Roll 角(加速度不能得到 Yaw 角),就是说有两组 Pitch、Roll 角,到底应该选哪组呢?别急,先分析一下。MPU6050 的加速度计和陀螺仪各有优缺点,三轴的加速度值没有累积误差,且通过算 tan()  可以得到倾角,但是它包含的噪声太多(因为待测物运动时会产生加速度,电机运行时振动会产生加速度等),不能直接使用;陀螺仪对外界振动影响小,精度高,通过对角速度积分可以得到倾角,但是会产生累积误差。所以,不能单独使用 MPU6050 的加速度计或陀螺仪来得到倾角,需要互补。一阶互补算法的思想就是给加速度和陀螺仪不同的权值,把它们结合到一起,进行修正。得到 Pitch 角的程序如下:



 
复制代码



//一阶互补滤波

float K1 =0.1; // 对加速度计取值的权重

float dt=0.001;//注意:dt的取值为滤波器采样时间

float angle;

 

angle_ax=atan(ax/az)*57.3;     //加速度得到的角度

gy=(float)gyo[1]/7510.0;       //陀螺仪得到的角速度

Pitch = yijiehubu(angle_ax,gy);

 

float yijiehubu(float angle_m, float gyro_m)//采集后计算的角度和角加速度

{

     angle = K1 * angle_m + (1-K1) * (angle + gyro_m * dt);

     return angle;

}




    互补算法只能得到一个倾角,这在平衡车项目中够用了,而在四轴飞行器设计中还需要 Roll 和 Yaw,就需要两个 互补算法,我是这样写的,注意变量不要搞混:

 
复制代码



//一阶互补滤波

float K1 =0.1; // 对加速度计取值的权重

float dt=0.001;//注意:dt的取值为滤波器采样时间

float angle_P,angle_R;



float yijiehubu_P(float angle_m, float gyro_m)//采集后计算的角度和角加速度

{

     angle_P = K1 * angle_m + (1-K1) * (angle_P + gyro_m * dt);

         return angle_P;

}

 

float yijiehubu_R(float angle_m, float gyro_m)//采集后计算的角度和角加速度

{

     angle_R = K1 * angle_m + (1-K1) * (angle_R + gyro_m * dt);

         return angle_R;

}

单靠 MPU6050 无法准确得到 Yaw 角,需要和地磁传感器结合使用。






三、卡尔曼滤波

      其实卡尔曼滤波和一阶互补有些相似,输入也是一样的。卡尔曼原理以及什么5个公式等等的,我也不太懂,就不写了,感兴趣的话可以上网查。在此给出具体程序,和一阶互补算法一样,每次卡尔曼滤波只能得到一个方向的角度。



 
复制代码





#include<math.h>

#include "stm32f10x.h"

#include "Kalman_Filter.h"




//卡尔曼滤波参数与函数

float dt=0.001;//注意:dt的取值为kalman滤波器采样时间

float angle, angle_dot;//角度和角速度

float P[2][2] = {{ 1, 0 },

                 { 0, 1 }};

float Pdot[4] ={ 0,0,0,0};

float Q_angle=0.001, Q_gyro=0.005; //角度数据置信度,角速度数据置信度

float R_angle=0.5 ,C_0 = 1;

float q_bias, angle_err, PCt_0, PCt_1, E, K_0, K_1, t_0, t_1;

 

//卡尔曼滤波

float Kalman_Filter(float angle_m, float gyro_m)//angleAx 和 gyroGy

{

        angle+=(gyro_m-q_bias) * dt;

        angle_err = angle_m - angle;

        Pdot[0]=Q_angle - P[0][1] - P[1][0];

        Pdot[1]=- P[1][1];

        Pdot[2]=- P[1][1];

        Pdot[3]=Q_gyro;

        P[0][0] += Pdot[0] * dt;

        P[0][1] += Pdot[1] * dt;

        P[1][0] += Pdot[2] * dt;

        P[1][1] += Pdot[3] * dt;

        PCt_0 = C_0 * P[0][0];

        PCt_1 = C_0 * P[1][0];

        E = R_angle + C_0 * PCt_0;

        K_0 = PCt_0 / E;

        K_1 = PCt_1 / E;

        t_0 = PCt_0;

        t_1 = C_0 * P[0][1];

        P[0][0] -= K_0 * t_0;

        P[0][1] -= K_0 * t_1;

        P[1][0] -= K_1 * t_0;

        P[1][1] -= K_1 * t_1;

        angle += K_0 * angle_err; //最优角度

        q_bias += K_1 * angle_err;

        angle_dot = gyro_m-q_bias;//最优角速度

 

        return angle;

}



声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/118212
推荐阅读
相关标签
  

闽ICP备14008679号