当前位置:   article > 正文

2024美赛MCM 问题A:资源可得性和性别比例_lamprey sex ratio data

lamprey sex ratio data

2024 MCM

Problem   A:   Resource   Availability   and   Sex   Ratios

While some animal species exist outside of the usual male or female sexes, most species are substantially either male or female. Although many species exhibit a 1:1 sex ratio at birth, other species deviate from an even sex ratio. This is called adaptive sex ratio variation. For example, the temperature of the nest incubating eggs of the American alligator influences the sex ratios at birth.

The role of lampreys is complex. In some lake habitats, they are seen as parasites with a significant impact on the ecosystem, whereas lampreys are also a food source in some regions of the world, such as Scandinavia, the Baltics, and for some Indigenous peoples of the Pacific Northwest in North America.

The sex ratio of sea lampreys can vary based on external circumstances. Sea lampreys become male or female depending on how quickly they grow during the larval stage. These larval growth rates are influenced by the availability of food. In environments where food availability is low, growth rates will be lower, and the percentage of males can reach approximately 78% of the population. In environments where food is more readily available, the percentage of males has been observed to be approximately 56% of the population.

We focus on the question of sex ratios and their dependence on local conditions, specifically for sea lampreys. Sea lampreys live in lake or sea habitats and migrate up rivers to spawn. The task is to examine the advantages and disadvantages of the ability for a species to alter its sex ratio depending on resource availability. Your team should develop and examine a model to provide insights into the resulting interactions in an ecosystem.

Questions to examine include the following:

  • What is the impact on the larger ecological system when the population of lampreys can alter its sex ratio?
  • What are the advantages and disadvantages to the population of lampreys?
  • What is the impact on the stability of the ecosystem given the changes in the sex ratios of lampreys?
  • Can an ecosystem with variable sex ratios in the lamprey population offer advantages to others in the ecosystem, such as parasites?

Your PDF solution of no more than 25 total pages should include:

  • One-page Summary Sheet.
  • Table of Contents.
  • Your complete solution.
  • References list.
  • AI Use Report (If used does not count toward the 25-page limit.)

Note: There is no specific required minimum page length for a complete MCM submission. You may use up to 25 total pages for all your solution work and any additional information you want to include (for example: drawings, diagrams, calculations, tables). Partial solutions are accepted. We permit the careful use of AI such as ChatGPT, although it is not necessary to create a solution to this problem. If you choose to utilize a generative AI, you must follow the COMAP AI use policy. This will result in an additional AI use report that you must add to the end of your PDF solution file and does not count toward the 25 total page limit for your solution.

Glossary

Lampreys: Lampreys (sometimes inaccurately called lamprey eels) are an ancient lineage of jawless fish of the order Petromyzontiformes. The adult lamprey is characterized by a toothed, funnel-like sucking mouth. Lampreys live mostly in coastal and fresh waters and are found in most temperate regions.

v102023

Use of Large Language Models and Generative AI Tools in COMAP Contests

This policy is motivated by the rise of large language models (LLMs) and generative AI assisted technologies. The policy aims to provide greater transparency and guidance to teams, advisors, and judges. This policy applies to all aspects of student work, from research and development of models (including code creation) to the written report. Since these emerging technologies are quickly evolving, COMAP will refine this policy as appropriate.

Teams must be open and honest about all their uses of AI tools. The more transparent a team and its submission are, the more likely it is that their work can be fully trusted, appreciated, and correctly used by others. These disclosures aid in understanding the development of intellectual work and in the proper acknowledgement of contributions. Without open and clear citations and references of the role of AI tools, it is more likely that questionable passages and work could be identified as plagiarism and disqualified.

Solving the problems does not require the use of AI tools, although their responsible use is permitted. COMAP recognizes the value of LLMs and generative AI as productivity tools that can help teams in preparing their submission; to generate initial ideas for a structure, for example, or when summarizing, paraphrasing, language polishing etc. There are many tasks in model development where human creativity and teamwork is essential, and where a reliance on AI tools introduces risks. Therefore, we advise caution when using these technologies for tasks such as model selection and building, assisting in the creation of code, interpreting data and results of models, and drawing scientific conclusions.

It is important to note that LLMs and generative AI have limitations and are unable to replace human creativity and critical thinking. COMAP advises teams to be aware of these risks if they choose to use LLMs:

  • Objectivity: Previously published content containing racist, sexist, or other biases can arise in LLM-generated text, and some important viewpoints may not be represented.
  • Accuracy: LLMs can ‘hallucinate’ i.e. generate false content, especially when used outside of their domain or when dealing with complex or ambiguous topics. They can generate content that is linguistically but not scientifically plausible, they can get facts wrong, and they have been shown to generate citations that don’t exist. Some LLMs are only trained on content published before a particular date and therefore present an incomplete picture.
  • Contextual understanding: LLMs cannot apply human understanding to the context of a piece of text, especially when dealing with idiomatic expressions, sarcasm, humor, or metaphorical language. This can lead to errors or misinterpretations in the generated content.
  • Training data: LLMs require a large amount of high-quality training data to achieve optimal performance. In some domains or languages, however, such data may not be readily available, thus limiting the usefulness of any output.

Guidance for teams

Teams are required to:

  1. Clearly indicate the use of LLMs or other AI tools in their report, including which model was used and for what purpose. Please use inline citations and the reference section. Also append the Report on Use of AI (described below) after your 25-page solution.
  2. Verify the accuracy, validity, and appropriateness of the content and any citations generated by language models and correct any errors or inconsistencies.
  3. Provide citation and references, following guidance provided here. Double-check citations to ensure they are accurate and are properly referenced.
  4. Be conscious of the potential for plagiarism since LLMs may reproduce substantial text from other sources. Check the original sources to be sure you are not plagiarizing someone else’s work.

COMAP will take appropriate action

when we identify submissions likely prepared with undisclosed use of such tools.

Citation and Referencing Directions

Think carefully about how to document and reference whatever tools the team may choose to use. A variety of style guides are beginning to incorporate policies for the citation and referencing of AI tools. Use inline citations and list all AI tools used in the reference section of your 25-page solution.

Whether or not a team chooses to use AI tools, the main solution report is still limited to 25 pages. If a team chooses to utilize AI, following the end of your report, add a new section titled Report on Use of AI. This new section has no page limit and will not be counted as part of the 25-page solution.

Examples (this is not exhaustive – adapt these examples to your situation):

Report on Use of AI

  1. OpenAI ChatGPT (Nov 5, 2023 version, ChatGPT-4) Query1: <insert the exact wording you input into the AI tool> Output: <insert the complete output from the AI tool>
  2. OpenAI Ernie (Nov 5, 2023 version, Ernie 4.0)

Query1: <insert the exact wording of any subsequent input into the AI tool> Output: <insert the complete output from the second query>

  1. Github CoPilot (Feb 3, 2024 version)

Query1: <insert the exact wording you input into the AI tool> Output: <insert the complete output from the AI tool>

  1. Google Bard (Feb 2, 2024 version)

Query: <insert the exact wording of your query> Output: <insert the complete output from the AI tool>

译文:

问题 A:资源可用性和性别比例


虽然有些动物物种不存在通常的雄性或雌性,但大多数物种基本上都是雄性或雌性。虽然许多物种在出生时的性别比例为 1:1,但其他物种的性别比例却偏离了平均值。这就是所谓的适应性性别比例变异。例如,美洲鳄孵卵巢的温度会影响其出生时的性别比例。


灯鱼的作用很复杂。在一些湖泊栖息地,灯鱼被视为对生态系统有重大影响的寄生虫,而在世界上的一些地区,如斯堪的纳维亚半岛、波罗的海地区以及北美西北太平洋地区的一些土著居民,灯鱼也是一种食物来源。


海灯鱼的性别比例会因外部环境而变化。海灯鱼变成雄性或雌性取决于它们在幼体阶段的生长速度。幼体的生长速度受食物供应的影响。在食物供应较少的环境中,生长速度会较低,雄性海灯鱼的比例可达到约 78%。在食物比较容易获得的环境中,雄性的比例据观察约占种群的 56%。

我们的研究重点是性别比例及其对当地条件的依赖性,特别是海灯鱼的性别比例。海灯鱼生活在湖泊或海洋栖息地,并溯流而上产卵。我们的任务是研究一个物种能够根据资源可用性改变性别比例的利弊。您的团队应开发并研究一个模型,以便深入了解生态系统中由此产生的相互作用。


需要研究的问题包括以下内容:


    当灯鱼种群能够改变其性别比例时,会对更大的生态系统产生什么影响?
    这对灯笼鱼种群有何利弊?
    灯鱼性别比例的变化对生态系统的稳定性有何影响?
    灯鱼种群性别比例变化的生态系统能否为生态系统中的其他生物(如寄生虫)带来好处?


您的 PDF 解决方案总页数不超过 25 页,其中应包括

    一页摘要表。
    目录。
    完整的解决方案。
    参考文献列表。
    人工智能使用报告(如已使用,则不计入 25 页限制。)

注意:对于提交的完整材料,没有具体的最低页数要求。你可以用最多 25 页的篇幅来完成所有的解答工作,以及你想包含的任何附加信息(例如:图纸、图表、计算、表格)。我们接受部分解决方案。我们允许谨慎使用人工智能,如 ChatGPT,但没有必要为这一问题创建解决方案。如果您选择使用生成式人工智能,则必须遵守 COMAP 人工智能使用政策。这将导致一份额外的人工智能使用报告,您必须将其添加到 PDF 解决方案文件的末尾,并且不计入解决方案的 25 页总页数限制中。

术语表


灯笼鱼 灯鱼(有时被不准确地称为灯鳗)是一种古老的无颌鱼类,属于石首鱼纲。成年灯鱼的特征是有一个齿状、漏斗状的吸吮口。灯鱼主要生活在沿海和淡水中,分布在大多数温带地区。


v102023

在 COMAP 竞赛中使用大型语言模型和生成式人工智能工具


本政策的出台是由于大型语言模型(LLM)和生成式人工智能辅助技术的兴起。该政策旨在为参赛队、顾问和评委提供更高的透明度和指导。该政策适用于学生作品的各个方面,从模型的研究和开发(包括代码创建)到书面报告。由于这些新兴技术发展迅速,COMAP 将根据实际情况完善本政策。


团队必须公开、诚实地说明他们对人工智能工具的所有使用情况。团队及其提交的报告越透明,其工作就越有可能得到他人的充分信任、赞赏和正确使用。这些信息的披露有助于了解智力工作的发展,也有助于对贡献给予适当的肯定。如果不对人工智能工具的作用进行公开、明确的引用和参考,有问题的段落和作品就更有可能被认定为剽窃并被取消资格。


解决问题并不需要使用人工智能工具,但允许负责任地使用这些工具。COMAP 认识到 LLM 和生成式人工智能作为生产力工具的价值,它们可以帮助团队准备提交材料;例如,生成结构的初步想法,或者在总结、转述、语言润色等方面。在模型开发的许多任务中,人类的创造力和团队合作都是必不可少的,而在这些任务中,再


解决这些问题并不需要使用人工智能工具,但允许负责任地使用这些工具。COMAP 认识到 LLM 和生成式人工智能作为生产力工具的价值,它们可以帮助团队准备提交材料;例如,为结构生成初步想法,或者在总结、转述、语言润色等方面。在模型开发的许多任务中,人类的创造力和团队合作是必不可少的,而依赖人工智能工具则会带来风险。因此,我们建议在使用这些技术进行模型选择和构建、协助创建代码、解释数据和模型结果以及得出科学结论等任务时要谨慎。


必须注意的是,LLM 和生成式人工智能有其局限性,无法取代人类的创造力和批判性思维。COMAP 建议团队在选择使用 LLMs 时要注意这些风险:


    客观性: 在 LLM 生成的文本中,可能会出现包含种族主义、性别歧视或其他偏见的已发布内容,一些重要观点可能无法体现。
    准确性: LLM 可能会产生 "幻觉",即生成错误的内容,尤其是在其领域之外使用或处理复杂或模糊的主题时。它们可能会生成语言上可信但科学上不可信的内容,它们可能会弄错事实,而且它们已被证明会生成不存在的引文。有些 LLM 只针对特定日期前发布的内容进行训练,因此呈现的内容并不完整。
    语境理解: LLM 无法将人类的理解力应用到文本的上下文中,尤其是在处理成语表达、讽刺、幽默或隐喻性语言时。这会导致生成的内容出现错误或曲解。
    训练数据: LLM 需要大量高质量的训练数据才能达到最佳性能。然而,在某些领域或语言中,此类数据可能并不容易获得,从而限制了任何输出结果的实用性。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/161694
推荐阅读
相关标签
  

闽ICP备14008679号