赞
踩
pg数据库中执行sql时,ORDER BY limit 10比ORDER BY limit 100更慢
SELECT
*,
(select cl.ITEM_DESC from tablelzl2 cl where item_name='name' and cl.ITEM_NO='abcdefg') AS "item"
FROM
tablelzl1 RI
WHERE RI.column1='AAAA'
AND RI.column2 = 'applyno20231112'
ORDER BY
RI.column3 DESC limit 10
Limit (cost=0.43..1522.66 rows=10 width=990)
-> Index Scan Backward using idx_tablelzl1_column3 on tablelzl1 ri (cost=0.43..158007.45 rows=1038 width=990)
Filter: (((column1)::text = 'AAAA'::text) AND ((column2)::text = 'applyno20231112'::text))
SubPlan 1
-> Index Scan using uk_tablelzl2_ii on tablelzl2 cl (cost=0.27..5.29 rows=1 width=18)
Index Cond: (((item_no)::text = 'manualSign'::text) AND ((item_name)::text = (ri.manual_sign)::text))
主表没有走到column2索引,而是走column3排序字段索引的Index Scan Backward,scan index的cost非常高,而最终的cost比较低,实际执行需要9s
如果把limit 10改成limit 100,执行计划正常:
SELECT
*,
(select cl.ITEM_DESC from tablelzl2 cl where cl.ITEM_NAME = RI.MANUAL_SIGN AND cl.ITEM_NO='manualSign') AS "manualSign"
FROM
tablelzl1 RI
WHERE RI.column1='AAAA'
AND RI.column2 = 'applyno20231112'
ORDER BY
RI.column3 DESC limit 100
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
Limit (cost=2632.28..3162.78 rows=100 width=990)
-> Result (cost=2632.28..8138.87 rows=1038 width=990)
-> Sort (cost=2632.28..2634.87 rows=1038 width=474)
Sort Key: ri.column3 DESC
-> Index Scan using idx_cri_column2 on tablelzl1 ri (cost=0.43..2592.61 rows=1038 width=474)
Index Cond: ((column2)::text = 'applyno20231112'::text)
Filter: ((column1)::text = 'AAAA'::text)
SubPlan 1
-> Index Scan using uk_tablelzl2_ii on tablelzl2 cl (cost=0.27..5.29 rows=1 width=18)
Index Cond: (((item_no)::text = 'manualSign'::text) AND ((item_name)::text = (ri.manual_sign)::text))
(10 rows)
子查询执行计划不变,主表走到column2单列索引,回表后排序再limit,执行非常快。
不仅是limit,如果原sql仅更换column2的值,执行计划也正常。也就是说这个生产的sql只有极个别的column2的值时执行计划是异常的。
执行计划分析:
子查询前后没变可以不用分析,主要是索引选择上的不同。column2是过滤字段,column3是排序字段,两个执行计划分别选择了这2个字段的索引。
所以问题的关键在于部分反向扫描排序索引时,代价预估的过低
explain (analyze,buffers)
看下真实的执行情况
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Limit (cost=0.43..1521.93 rows=10 width=990) (actual time=23.311..8122.516 rows=10 loops=1) Buffers: shared hit=861100 read=42985 dirtied=7 I/O Timings: read=6741.003 -> Index Scan Backward using idx_tablelzl1_column3 on tablelzl1 ri (cost=0.43..157932.45 rows=1038 width=990) (actual time=23.309..8122.505 rows=10 loops=1) Filter: (((column1)::text = 'AAAA'::text) AND ((column2)::text = 'applyno20231112'::text)) Rows Removed by Filter: 1521796 Buffers: shared hit=861100 read=42985 dirtied=7 I/O Timings: read=6741.003 SubPlan 1 -> Index Scan using uk_tablelzl2_ii on tablelzl2 cl (cost=0.27..5.29 rows=1 width=18) (actual time=0.005..0.005 rows=0 loops=10) Index Cond: (((item_no)::text = 'manualSign'::text) AND ((item_name)::text = (ri.manual_sign)::text)) Buffers: shared hit=6 Planning: Buffers: shared hit=121 read=28 I/O Timings: read=1.476 Planning Time: 2.314 ms Execution Time: 8122.658 ms
Limit (cost=2632.28..3162.78 rows=100 width=990) (actual time=150.101..150.122 rows=14 loops=1) Buffers: shared hit=700 read=274 I/O Timings: read=146.903 -> Result (cost=2632.28..8138.87 rows=1038 width=990) (actual time=150.100..150.119 rows=14 loops=1) Buffers: shared hit=700 read=274 I/O Timings: read=146.903 -> Sort (cost=2632.28..2634.87 rows=1038 width=474) (actual time=150.072..150.073 rows=14 loops=1) Sort Key: ri.column3 DESC Sort Method: quicksort Memory: 30kB Buffers: shared hit=694 read=274 I/O Timings: read=146.903 -> Index Scan using idx_cri_column2 on tablelzl1 ri (cost=0.43..2592.61 rows=1038 width=474) (actual time=0.418..149.973 rows=14 loops=1) Index Cond: ((column2)::text = 'applyno20231112'::text) Filter: ((column1)::text = 'AAAA'::text) Rows Removed by Filter: 1218 Buffers: shared hit=691 read=274 I/O Timings: read=146.903 SubPlan 1 -> Index Scan using uk_tablelzl2_ii on tablelzl2 cl (cost=0.27..5.29 rows=1 width=18) (actual time=0.002..0.002 rows=0 loops=14) Index Cond: (((item_no)::text = 'manualSign'::text) AND ((item_name)::text = (ri.manual_sign)::text)) Buffers: shared hit=6 Planning Time: 0.334 ms Execution Time: 150.257 ms
limit 10的执行计划,执行8s,内存读shared hit=861100 磁盘读read=42985 ,丢弃了1521796行
limit 100的执行计划执行0.1s shared hit=694 read=274,丢弃了1218行
limit 10的执行计划明显是不正常,读了太多的数据才找到符合条件的行,这是sql执行过慢的原因
本身预估的代价不高,但是实际上需要扫描非常多的索引行,首先想到是否是统计信息是否准确
表的统计信息:
[postgres@cnsz381785:7169/(rasesql)phmamp][10-30.15:01:26]M=# select relpages,reltuples::bigint from pg_class where relname='tablelzl1';
relpages | reltuples
----------+-----------
91172 | 2280874 --count出来差不多
字段的统计信息:
[phmampopr@cnsz381785:7169/(rasesql)phmamp][10-27.17:08:48]M=> select * from pg_stats where tablename='tablelzl1' and attname='column2'; -[ RECORD 1 ]----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- schemaname | public tablename | tablelzl1 attname | column2 inherited | f null_frac | 0 avg_width | 18 n_distinct | -0.11990886 most_common_vals | {applyno20231112,DY20190723006650,DY20200102012899,DY20180827000557,DY20190524001304,DY20190529001885,DY20190728002359} most_common_freqs | {0.0005,0.00026666667,0.00023333334,0.0002,0.0002,0.0002,0.0002} histogram_bounds | {CULZF0000121605605,DSNEW0000126854232,DSNEW0000137652871,DY20160516001057,DY20161104005509,DY20170306002677,DY20170703010428,DY20170928013517,DY20180410007383,DY20180615002936,DY20180 correlation | 0.3131596 most_common_elems | [null] most_common_elem_freqs | [null] elem_count_histogram | [null]
这个column2 applyno20231112刚好就是排第一的most_common_vals,出现预估概率是0.0005,用预估的行2280874*0.0005=1140,与实际的行数1232差不多
[postgres@cnsz381785:7169/(rasesql)phmamp][10-30.15:05:28]M=# select count(*) from tablelzl1 where column2 = 'applyno20231112';
count
-------
1232
说明统计信息是准确的,实际上运行analze
收集统计信息也不会解决这个问题
用当前统计信息计算出来的符合条件的行有1140个,那么预计从排序字段的索引上找到第一条数据平均要扫描2280874/1140=2000个索引行。如果找10条便是20000个索引行,100条便是200000个索引行。
把sort禁用,让limit 100语句强行走排序字段的索引
M=# set enable_sort=off;
SET
--limit 100的执行计划
Limit (cost=0.43..15222.69 rows=100 width=990)
-> Index Scan Backward using idx_tablelzl1_column3 on tablelzl1 ri (cost=0.43..158007.45 rows=1038 width=990)
Filter: (((column1)::text = 'AAAA'::text) AND ((column2)::text = 'applyno20231112'::text))
SubPlan 1
-> Index Scan using uk_tablelzl2_ii on tablelzl2 cl (cost=0.27..5.29 rows=1 width=18)
Index Cond: (((item_no)::text = 'manualSign'::text) AND ((item_name)::text = (ri.manual_sign)::text))
limit 10改成limit 100后的执行计划,代价从1522.66升到了15222.69,基本上只是简单的*10。limit 100的代价15222.69大于了走过滤字段索引的执行计划cost 3162.78,所以limit 10和limit 100执行计划不同,选择了不同的索引。
以上的估算都是以数据零散的放在排序列的索引上 为前提的,实际情况有可能数据在最后一条(反向扫描索引),很快就能找到;也有可能数据全部在索引叶节点前面的几个pages,此时几乎是扫描全部索引并回表,代价便非常高。
那么两个字段的关联度,数据在索引上的分布情况,决定了使用排序字段的索引 的效率。
再看下真实的执行扫描了多少行数据:
-> Index Scan Backward using idx_tablelzl1_column3 on tablelzl1 ri (cost=0.43..157932.45 rows=1038 width=990) (actual time=23.309..8122.505 rows=10 loops=1)
Filter: (((column1)::text = 'AAAA'::text) AND ((column2)::text = 'applyno20231112'::text))
Rows Removed by Filter: 1521796
实际上差不多扫描了1521796行才找到这10条数据,本来预估的是20000,整整相差了76倍!
改写sql语句:添加表达式,不让order by字段走索引即可
SELECT
*,
(select cl.ITEM_DESC from tablelzl2 cl where cl.ITEM_NAME = RI.MANUAL_SIGN AND cl.ITEM_NO='manualSign') AS "manualSign"
FROM
tablelzl1 RI
WHERE RI.column1='AAAA'
AND RI.column2 = 'applyno20231112'
ORDER BY
RI.column3 +'0' DESC limit 10
从上面的执行计划分析,pg的执行计划cost看起来不太适应,上层的cost小于内层的cost,不像oracle这样阶梯式的累加计算
这里做一个oracle和pg的实验,一张表仅存储colname='x’的数据,看下pg和oracle的对cost计算的区别:
[postgres@cnsz381785:7169/(rasesql)dbmgr][10-31.14:32:19]M=# explain select * from testlzl where col1='x' limit 1;
QUERY PLAN
-----------------------------------------------------------------------
Limit (cost=0.00..0.02 rows=1 width=2)
-> Seq Scan on testlzl (cost=0.00..17747.20 rows=1048576 width=2)
Filter: ((col1)::text = 'x'::text)
[postgres@cnsz381785:7169/(rasesql)dbmgr][10-31.14:32:30]M=# explain select * from testlzl where col1='xx' limit 1;
QUERY PLAN
-----------------------------------------------------------------
Limit (cost=0.00..17747.20 rows=1 width=2)
-> Seq Scan on testlzl (cost=0.00..17747.20 rows=1 width=2)
Filter: ((col1)::text = 'xx'::text)
col1='x’立马就能找到,limit的算法没有推入到全表扫描的成本中,total cost是17747.20,跟扫描完表的成本是一样的。limit的成本cost虽然没有下推到内层的cost做计算,但是rows计算了!
来看下oracle是执行计划是怎么做的:
SYS@t8icss1> select * from dbmgr.testlzl where a='x' and rownum<=1; 1 row selected. Execution Plan ---------------------------------------------------------- Plan hash value: 2045386539 ------------------------------------------------------------------------------ | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 1 | 2 | 2 (0)| 00:00:01 | |* 1 | COUNT STOPKEY | | | | | | |* 2 | TABLE ACCESS FULL| TESTLZL | 1 | 2 | 2 (0)| 00:00:01 | ------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(ROWNUM<=1) 2 - filter("A"='x')
SYS@t8icss1> select * from dbmgr.testlzl where a='xx' and rownum<=1; no rows selected Execution Plan ---------------------------------------------------------- Plan hash value: 2045386539 ------------------------------------------------------------------------------ | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 1 | 2 | 302 (2)| 00:00:01 | |* 1 | COUNT STOPKEY | | | | | | |* 2 | TABLE ACCESS FULL| TESTLZL | 1 | 2 | 302 (2)| 00:00:01 | ------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(ROWNUM<=1) 2 - filter("A"='xx')
对于oracle的计划,a='x’的数据可以立即找到的话,STOPKEY的代价算进了内层的cost中,cost只有2,实际上扫描全表的代价比较高302。
这一点是oracle与pg关于cost计算的一个重要区别:
知道了数据分布不均的原理,造一条数据把他放在排序索引的开头即可
create table tlzl(a char(100) not null,b char(100) not null); --插入批量数据 begin for i in 1..100000 loop insert into tlzl values('test','test'); end loop; end; / --插入特殊数据 insert into tlzl values('aaaa','aaaa'); insert into tlzl values('zzzz','zzzz'); --创建索引 create index idx_a on tlzl(a); create index idx_b on tlzl(b); --收集统计信息 EXEC DBMS_STATS.GATHER_TABLE_STATS(OWNNAME=>'SYS',TABNAME=>'TLZL',estimate_percent => 10, degree=>1,METHOD_OPT=>'FOR ALL COLUMNS SIZE AUTO',cascade=>true);
select * from (select /*+ index(tlzl idx_a)*/* from tlzl where b='aaaa' order by a) where rownum<=1;
select * from (select /*+ index(tlzl idx_a)*/* from tlzl where b='zzzz' order by a) where rownum<=1;
SYS@t8icss1> select * from (select /*+ index(tlzl idx_a)*/* from tlzl where b='aaaa' order by a) where rownum<=1;
Execution Plan
----------------------------------------------------------
Plan hash value: 3674066029
---------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 204 | 2210 (1)| 00:00:01 |
|* 1 | COUNT STOPKEY | | | | | |
| 2 | VIEW | | 1 | 204 | 2210 (1)| 00:00:01 |
|* 3 | TABLE ACCESS BY INDEX ROWID| TLZL | 1 | 202 | 2210 (1)| 00:00:01 |
| 4 | INDEX FULL SCAN | IDX_A | 98830 | | 779 (1)| 00:00:01 |
---------------------------------------------------------------------------------------
SYS@t8icss1> select * from (select /*+ index(tlzl idx_a)*/* from tlzl where b='zzzz' order by a) where rownum<=1;
Execution Plan
----------------------------------------------------------
Plan hash value: 3674066029
---------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 204 | 2210 (1)| 00:00:01 |
|* 1 | COUNT STOPKEY | | | | | |
| 2 | VIEW | | 1 | 204 | 2210 (1)| 00:00:01 |
|* 3 | TABLE ACCESS BY INDEX ROWID| TLZL | 1 | 202 | 2210 (1)| 00:00:01 |
| 4 | INDEX FULL SCAN | IDX_A | 98830 | | 779 (1)| 00:00:01 |
---------------------------------------------------------------------------------------
oracle的优化器也是一样的,优化器并不知道数据到底放在索引的哪个地方,没有办法,放在索引的第一条和最后一条都是估算的同一代价。
不过oracle有很多方法可以解决这个问题,如extended statistic、Automatic Column Group Detection、固化执行计划等。
http://www.postgres.cn/v2/news/viewone/1/717
https://oracle-base.com/articles/12c/automatic-column-group-detection-extended-statistics-12cr1
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。