当前位置:   article > 正文

基于SVM-支持向量机对鸢尾花数据进行分类_cnn-svm 莺尾花

cnn-svm 莺尾花

 目录

认识SVM——支持向量机

 SVM的"硬间隔"与"软间隔"

 实战——SVM对鸢尾花分类


认识SVM——支持向量机

什么是支持向量机

支持向量机(SVM),Supported Vector Machine,基于线性划 分,输出一个最优化的 分隔超平面,该超平面不但能将两类正确分开,且使分类间隔 (margin)最大 

  •  所有训练数据点距离最优分类超平面的距离都要大于支持向量距 离此分类超平面的距离
  • 支持向量点到最优分类超平面距离越大越好

 注意: SVM的终极目标是求出一个最优的线性分类超平面

 SVM的核函数

        当在低维空间中,不能对样本线性可分时,将低维空间中的点 映射到高维空间中,使 它们成为线性可分的,再使用线性划分的原理来判断分类边界。 这里有个问题:如果直接采用这种技术在高维空间进行分类或 回归,可能在高维特征 空间运算时出现"维数灾难"!采用核函数技术(kernel trick)可以有效 地解决这样的问题 直接在低维空间用核函数,其本质是用低维空间中的更复杂的 运算代替高维空间中的普 通内积。

常用的核函数

  • linear:线性核函数 当训练数据线性可分时,一般用线性核函数,直接实现可分
  • poly:多项式核函数
  • rbf:径向基核函数/高斯核函数(Radial Basis Function Kernel) gamma值越小,模型越倾向于欠拟合 gamma值越大,模型越倾向于过拟合
  • sigmod:sigmod核函数

 SVM的"硬间隔"与"软间隔"

硬间隔

当支持向量机(SVM)要求所有样本都必须划分正确,这称为 “硬间隔”(hard margin)。 

软间隔

到目前为止,我们一直假定存在一个超平面能将不同类的样本 完全划分开。然而,在现 实任务中往往很难确定合适的核函数使得训练样本线性可分(即使 找到了,也很有可能 是在训练样本上由于过拟合所造成的) 缓解该问题的一个办法是允许支持向量机在一些样本上出错, 这称为"软间隔"(soft margin)。 

 软间隔支持向量机的数学表达式为(L1正则):

 或者(L2正则)

 注意: 正则项前面的常数C,C越大说明相应的容错空间越小,若C 取正无穷,则"逼迫"着每个ζ(也称为“松弛变量”)都必须等于 0,此时的Soft Margin SVM就变成了Hard Margin SVM.

 实战——SVM对鸢尾花分类

在sklearn中可通过sklearn.svm.SVC使用支持向量机的方式分类 本节课使用SVC对两种鸢尾花的类型进行分类

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. from sklearn import datasets
  4. iris = datasets.load_iris() # 加载鸢尾花数据集
  5. X = iris.data # 样本特征
  6. y = iris.target # 样本标签
  7. X = X[y<2,:2] # 选择前两种花,为了可视化,只选择前两个特征
  8. y = y[y<2]
  9. plt.scatter(X[y==0,0],X[y==0,1],color='red')
  10. plt.scatter(X[y==1,0],X[y==1,1],color='blue')
  11. plt.show()

  1. from sklearn.model_selection import train_test_split
  2. # 拆分数据集
  3. X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)
  4. from sklearn.preprocessing import StandardScaler
  5. # 标准化样本特征
  6. std = StandardScaler()
  7. X_train_std = std.fit_transform(X_train)
  8. X_test_std = std.transform(X_test)
  9. # 使用SVC分类
  10. from sklearn.svm import SVC
  11. # 使用rbf核函数,相应地设置rbf核函数的gamma参数,C是正则化参数
  12. svc = SVC(C=1.0,kernel="rbf",gamma=1.0)
  13. svc.fit(X_train_std,y_train) # 训练样本集上拟合
  14. svc.score(X_test_std,y_test) # 测试样本集上测试分类准确率

 

准确率100% 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/377456
推荐阅读
相关标签
  

闽ICP备14008679号