赞
踩
有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
dp[i][j]表示从下标为 0—i 的物品中,放进容量为j的背包,价值总和最大是多少。
可以有两个方向推出dp[i][j]
dp[i][j] = max( dp[i-1][j], dp[i-1][j-weight[i]]+value[i]);
如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。
dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
for (int j = 0 ; j < weight[0]; j++) {
dp[0][j] = 0;
}
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。
有两个遍历的维度:物品与背包重量
先遍历 物品还是先遍历背包重量呢?
先遍历物品,再遍历背包的过程如图所示:
// weight数组的大小 就是物品个数
for(int i = 1; i < weight.length; i++) { // 遍历物品
for(int j = 1; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
先遍历背包,再遍历物品:
// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
for(int i = 1; i < weight.length; i++) { // 遍历物品
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
都可以,因为正如上边所说 数值推导是由左上方来的
虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,不会影响dp[i][j]公式的推导!
public class BagProblem { public static void main(String[] args) { int[] weight = {1,3,4}; int[] value = {15,20,30}; int bagSize = 4; testWeightBagProblem(weight,value,bagSize); } /** * 动态规划获得结果 * @param weight 物品的重量 * @param value 物品的价值 * @param bagSize 背包的容量 */ public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){ // 创建dp数组 int goods = weight.length; // 获取物品的数量 int[][] dp = new int[goods][bagSize + 1]; // 初始化dp数组 // 创建数组后,其中默认的值就是0 for (int j = weight[0]; j <= bagSize; j++) { dp[0][j] = value[0]; } // 填充dp数组 for (int i = 1; i < weight.length; i++) { for (int j = 1; j <= bagSize; j++) { if (j < weight[i]) { /** * 当前背包的容量都没有当前物品i大的时候,是不放物品i的 * 那么前i-1个物品能放下的最大价值就是当前情况的最大价值 */ dp[i][j] = dp[i-1][j]; } else { /** * 当前背包的容量可以放下物品i * 那么此时分两种情况: * 1、不放物品i * 2、放物品i * 比较这两种情况下,哪种背包中物品的最大价值最大 */ dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]); } } } // 打印dp数组 for (int i = 0; i < goods; i++) { for (int j = 0; j <= bagSize; j++) { System.out.print(dp[i][j] + "\t"); } System.out.println("\n"); } } }
在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);
与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了dp[j]
需要满足的条件是上一层可以重复利用,直接拷贝到当前层。
dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],相当于 二维dp数组中的dp[i-1][j- weight[i]] + value[i],即放物品i,一定是取最大的,毕竟是求最大价值,
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。
如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。
for(int i = 0; i < weight.length; i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。
倒序遍历的原因:是为了保证物品i只被放入一次。
举例:
物品0的重量weight[0] = 1,价值value[0] = 15
正序遍历:dp[0] = 0;
dp[1] = Math.max(dp[1], dp[1-weight[0]]+value[0]) = 15; (dp数组已经都初始化为0)
dp[2] = Math.max(dp[2] , dp[2-weight[0]]+value[0]) = 30; (dp数组已经都初始化为0)
也就是说物品0又被放进去一次,所以不能正序遍历。
为什么倒序遍历可以?
倒序遍历:先求dp[2]
dp[2] = Math.max(dp[2] , dp[2-weight[0]]+value[0]) = 15; (dp数组已经都初始化为0)
dp[1] = Math.max(dp[1], dp[1-weight[0]]+value[0]) = 15; (dp数组已经都初始化为0)
问题二:为什么二维dp数组历的时候不用倒序?
因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!
问题三:可不可以先遍历背包容量嵌套遍历物品呢?
不可以
如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。
public static void main(String[] args) { int[] weight = {1, 3, 4}; int[] value = {15, 20, 30}; int bagWight = 4; testWeightBagProblem(weight, value, bagWight); } public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){ int wLen = weight.length; //定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值 int[] dp = new int[bagWeight + 1]; //遍历顺序:先遍历物品,再遍历背包容量 for (int i = 0; i < wLen; i++){ for (int j = bagWeight; j >= weight[i]; j--){ dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]); } } //打印dp数组 for (int j = 0; j <= bagWeight; j++){ System.out.print(dp[j] + " "); } }
使用一维dp数组的写法,比较直观简洁,而且空间复杂度还降了一个数量级!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。