赞
踩
目录
子任务一:Spark中的HashShuffle的有哪些不足?
子任务二:请简述Flink的Slot和parallelism有什么区别。
2023年全国职业院校技能大赛
赛题第06套
赛项名称: 大数据应用开发
英文名称: Big Data Application Development
赛项组别: 高等职业教育组
赛项编号: GZ033
背景描述
大数据时代背景下,电商经营模式发生很大改变。在传统运营模式中,缺乏数据积累,人们在做出一些决策行为过程中,更多是凭借个人经验和直觉,发展路径比较自我封闭。而大数据时代,为人们提供一种全新的思路,通过大量的数据分析得出的结果将更加现实和准确。商家可以对客户的消费行为信息数据进行收集和整理,比如消费者购买产品的花费、选择产品的渠道、偏好产品的类型、产品回购周期、购买产品的目的、消费者家庭背景、工作和生活环境、个人消费观和价值观等。通过数据追踪,知道顾客从哪儿来,是看了某网站投放的广告还是通过朋友推荐链接,是新访客还是老用户,喜欢浏览什么产品,购物车有无商品,是否清空,还有每一笔交易记录,精准锁定一定年龄、收入、对产品有兴趣的顾客,对顾客进行分组、标签化,通过不同标签组合运用,获得不同目标群体,以此开展精准推送。
因数据驱动的零售新时代已经到来,没有大数据,我们无法为消费者提供这些体验,为完成电商的大数据分析工作,你所在的小组将应用大数据技术,以Scala作为整个项目的基础开发语言,基于大数据平台综合利用Hudi、Spark、Flink、Vue.js等技术,对数据进行处理、分析及可视化呈现,你们作为该小组的技术人员,请按照下面任务完成本次工作。
环境说明:
服务端登录地址详见各任务服务端说明。 补充说明:宿主机及各容器节点可通过Asbru工具或SSH客户端进行SSH访问。 |
本任务需要使用root用户完成相关配置,安装Hadoop需要配置前置环境。命令中要求使用绝对路径,具体要求如下:
从宿主机/opt目录下将文件hadoop-3.1.3.tar.gz、jdk-8u212-linux-x64.tar.gz复制到容器Master中的/opt/software路径中(若路径不存在,则需新建),将Master节点JDK安装包解压到/opt/module路径中(若路径不存在,则需新建),将JDK解压命令复制并粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
修改容器中/etc/profile文件,设置JDK环境变量并使其生效,配置完毕后在Master节点分别执行“java -version”和“javac”命令,将命令行执行结果分别截图并粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
请完成host相关配置,将三个节点分别命名为master、slave1、slave2,并做免密登录,用scp命令并使用绝对路径从Master复制JDK解压后的安装文件到slave1、slave2节点(若路径不存在,则需新建),并配置slave1、slave2相关环境变量,将全部scp复制JDK的命令复制并粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
在Master将Hadoop解压到/opt/module(若路径不存在,则需新建)目录下,并将解压包分发至slave1、slave2中,其中master、slave1、slave2节点均作为datanode,配置好相关环境,初始化Hadoop环境namenode,将初始化命令及初始化结果截图(截取初始化结果日志最后20行即可)粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
启动Hadoop集群(包括hdfs和yarn),使用jps命令查看Master节点与slave1节点的Java进程,将jps命令与结果截图粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下。
本任务需要使用root用户完成相关配置,已安装Hadoop及需要配置前置环境,具体要求如下:
(运行命令为:spark-submit --master yarn --class org.apache.spark.examples.SparkPi $SPARK_HOME/examples/jars/spark-examples_2.12-3.1.1.jar)
本任务需要使用root用户完成相关配置,具体要求如下:
<mirror>
<id>nexus-aliyun</id>
<mirrorOf>central</mirrorOf>
<name>Nexus aliyun</name>
<url>http://maven.aliyun.com/nexus/content/groups/public</url>
</mirror>
(提示:编译需要替换以下内容:
1.将父模块pom.xml替换;
2.hudi-common/src/main/java/org/apache/hudi/common/table/log/block/HoodieParquetDataBlock.java替换;
3.将packaging/hudi-utilities-bundle/pom.xml替换)
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.hudi.common.model.HoodieRecord
val tableName = "hudi_trips_cow"
val basePath = "file:///tmp/hudi_trips_cow"
val dataGen = new DataGenerator
val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)
val tripsSnapshotDF = spark.read.format("hudi").load(basePath + "/*/*/*/*")
tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
spark.sql("select fare, begin_lon, begin_lat, ts from hudi_trips_snapshot where fare > 20.0").show()
环境说明:
服务端登录地址详见各任务服务端说明。 补充说明:各节点可通过Asbru工具或SSH客户端进行SSH访问; 主节点MySQL数据库用户名/密码:root/123456(已配置远程连接); Spark任务在Yarn上用Client运行,方便观察日志。 |
编写Scala代码,使用Spark将MySQL的shtd_store库中表user_info、sku_info、base_province、base_region、order_info、order_detail的数据增量抽取到Hudi的ods_ds_hudi库(路径为/user/hive/warehouse/ods_ds_hudi.db)的user_info、sku_info、base_province、base_region、order_info、order_detail中。(若ods_ds_hudi库中部分表没有数据,正常抽取即可)
抽取shtd_store库中user_info的增量数据进入Hudi的ods_ds_hudi库中表user_info。根据ods_ds_hudi.user_info表中operate_time或create_time作为增量字段(即MySQL中每条数据取这两个时间中较大的那个时间作为增量字段去和ods_ds_hudi里的这两个字段中较大的时间进行比较),只将新增的数据抽入,字段名称、类型不变,同时添加分区,若operate_time为空,则用create_time填充,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。id作为primaryKey,operate_time作为preCombineField。使用spark-shell执行show partitions ods_ds_hudi.user_info命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
抽取shtd_store库中sku_info的增量数据进入Hudi的ods_ds_hudi库中表sku_info。根据ods_ds_hudi.sku_info表中create_time作为增量字段,只将新增的数据抽入,字段名称、类型不变,同时添加分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。id作为primaryKey,operate_time作为preCombineField。使用spark-shell执行show partitions ods_ds_hudi.sku_info命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
抽取shtd_store库中base_province的增量数据进入Hudi的ods_ds_hudi库中表base_province。根据ods_ds_hudi.base_province表中id作为增量字段,只将新增的数据抽入,字段名称、类型不变并添加字段create_time取当前时间,同时添加分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。id作为primaryKey,create_time作为preCombineField。使用spark-shell执行show partitions ods_ds_hudi.base_province命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
抽取shtd_store库中base_region的增量数据进入Hudi的ods_ds_hudi库中表base_region。根据ods_ds_hudi.base_region表中id作为增量字段,只将新增的数据抽入,字段名称、类型不变并添加字段create_time取当前时间,同时添加分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。id作为primaryKey,create_time作为preCombineField。使用spark-shell执行show partitions ods_ds_hudi.base_region命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
抽取shtd_store库中order_info的增量数据进入Hudi的ods_ds_hudi库中表order_info,根据ods_ds_hudi.order_info表中operate_time或create_time作为增量字段(即MySQL中每条数据取这两个时间中较大的那个时间作为增量字段去和ods_ds_hudi里的这两个字段中较大的时间进行比较),只将新增的数据抽入,字段名称、类型不变,同时添加分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。id作为primaryKey,operate_time作为preCombineField。使用spark-shell执行show partitions ods_ds_hudi.order_info命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
抽取shtd_store库中order_detail的增量数据进入Hudi的ods_ds_hudi库中表order_detail,根据ods_ds_hudi.order_detail表中create_time作为增量字段,只将新增的数据抽入,字段名称、类型不变,同时添加分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。id作为primaryKey,create_time作为preCombineField。使用spark-shell执行show partitions ods_ds_hudi.order_detail命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下。
编写Scala代码,使用Spark将ods_ds_hudi库中相应表数据全量抽取到Hudi的dwd_ds_hudi库(路径为/user/hive/warehouse/dwd_ds_hudi.db)中对应表中。表中有涉及到timestamp类型的,均要求按照yyyy-MM-dd HH:mm:ss,不记录毫秒数,若原数据中只有年月日,则在时分秒的位置添加00:00:00,添加之后使其符合yyyy-MM-dd HH:mm:ss。(若dwd_ds_hudi库中部分表没有数据,正常抽取即可)
编写Scala代码,使用Spark计算相关指标。
注:在指标计算中,不考虑订单信息表中order_status字段的值,将所有订单视为有效订单。计算订单金额或订单总金额时只使用final_total_amount字段。需注意dwd_ds_hudi所有的维表取最新的分区。
字段 | 类型 | 中文含义 | 备注 |
uuid | string | 随机字符 | 随机字符,保证不同即可,作为primaryKey |
province_id | int | 省份主键 | |
province_name | string | 省份名称 | |
region_id | int | 地区主键 | |
region_name | string | 地区名称 | |
total_amount | double | 订单总金额 | 当月订单总金额 |
total_count | int | 订单总数 | 当月订单总数。同时可作为preCombineField(作为合并字段时,无意义,因为主键为随机生成) |
sequence | int | 次序 | |
year | int | 年 | 订单产生的年,为动态分区字段 |
month | int | 月 | 订单产生的月,为动态分区字段 |
字段 | 类型 | 中文含义 | 备注 |
topquantityid | int | 商品id | 销售量前10的商品 |
topquantityname | text | 商品名称 | 销售量前10的商品 |
topquantity | int | 该商品销售量 | 销售量前10的商品 |
toppriceid | text | 商品id | 销售额前10的商品 |
toppricename | text | 商品名称 | 销售额前10的商品 |
topprice | decimal | 该商品销售额 | 销售额前10的商品 |
sequence | int | 排名 | 所属排名 |
提示:可用percentile函数求取中位数。
字段 | 类型 | 中文含义 | 备注 |
provinceid | int | 省份表主键 | |
provincename | text | 省份名称 | |
regionid | int | 地区表主键 | |
regionname | text | 地区名称 | |
provincemedian | double | 该省份中位数 | 该省份订单金额中位数 |
regionmedian | double | 该省所在地区中位数 | 该省所在地区订单金额中位数 |
环境说明:
服务端登录地址详见各任务服务端说明。 补充说明:各节点可通过Asbru工具或SSH客户端进行SSH访问; 主节点MySQL数据库用户名/密码:root/123456(已配置远程连接); Spark任务在Yarn上用Client运行,方便观察日志。 该任务均使用Scala编写,利用Spark相关库完成。 |
剔除订单信息表与订单详细信息表中用户id与商品id不存在于现有的维表中的记录,同时建议多利用缓存并充分考虑并行度来优化代码,达到更快的计算效果。
字段 | 类型 | 中文含义 | 备注 |
user_id | int | 用户id的mapping对应键 | |
sku_id | int | 商品id的mapping对应键 |
提示:
Mapping操作:例如用户id:1、4、7、8、9,则做完mapping操作转为字典类型,键0对应用户id 1,键1对应用户id 4,以此类推
结果格式如下:
-------user_id_mapping与sku_id_mapping数据前5条如下:-------
0:0
0:89
1:1
1:2
1:3
字段 | 类型 | 中文含义 | 备注 |
user_id | double | 客户key | |
sku_id0 | double | 用户是否购买过商品1 | 若用户购买过该商品,则值为1,否则为0 |
sku_id1 | double | 用户是否购买过商品2 | 若用户购买过该商品,则值为1,否则为0 |
sku_id2 | double | 用户是否购买过商品3 | 若用户购买过该商品,则值为1,否则为0 |
..... |
结果格式如下:
---------------第一行前5列结果展示为---------------
0.0,1.0,0.0,0.0,0.0
结果格式如下:
------------------------推荐Top5结果如下------------------------
相似度top1(商品id:1,平均相似度:0.983456)
相似度top2(商品id:71,平均相似度:0.782672)
相似度top3(商品id:22,平均相似度:0.7635246)
相似度top4(商品id:351,平均相似度:0.7335748)
相似度top5(商品id:14,平均相似度:0.522356)
环境说明:
服务端登录地址详见各任务服务端说明。 补充说明:各节点可通过Asbru工具或SSH客户端进行SSH访问; Flink任务在Yarn上用per job模式(即Job分离模式,不采用Session模式),方便Yarn回收资源。 |
编写Scala代码,使用Flink消费Kafka中Topic为order的数据并进行相应的数据统计计算(订单信息对应表结构order_info,订单详细信息对应表结构order_detail(来源类型和来源编号这两个字段不考虑,所以在实时数据中不会出现),同时计算中使用order_info或order_detail表中create_time或operate_time取两者中值较大者作为EventTime,若operate_time为空值或无此列,则使用create_time填充,允许数据延迟5s,订单状态order_status分别为1001:创建订单、1002:支付订单、1003:取消订单、1004:完成订单、1005:申请退回、1006:退回完成。另外对于数据结果展示时,不要采用例如:1.9786518E7的科学计数法)。
示例如下:
top3itemamount:[1:700,42:500,41:100]
示例如下:
top3itemconsumption:[1:10020.2,42:4540.0,12:540]
环境说明:
数据接口地址及接口描述详见各任务服务端说明。 |
编写Vue工程代码,根据接口,用柱状图展示2020年消费额最高的5个省份,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至客户端桌面【Release\任务E提交结果.docx】中对应的任务序号下。
编写Vue工程代码,根据接口,用饼状图展示2020年各地区的消费总额占比,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至客户端桌面【Release\任务E提交结果.docx】中对应的任务序号下。
编写Vue工程代码,根据接口,用折线图展示每年上架商品数量的变化情况,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至客户端桌面【Release\任务E提交结果.docx】中对应的任务序号下。
编写Vue工程代码,根据接口,用条形图展示2020年消费额最高的5个地区,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至客户端桌面【Release\任务E提交结果.docx】中对应的任务序号下。
编写Vue工程代码,根据接口,用基础散点图展示2020年最高10个省份平均消费额(四舍五入保留两位小数),同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至客户端桌面【Release\任务E提交结果.docx】中对应的任务序号下。
请简述Spark中HashShuffle有哪些不足,将内容编写至客户端桌面【Release\任务F提交结果.docx】中对应的任务序号下。
请简述Flink的Slot和parallelism有什么区别,将内容编写至客户端桌面【Release\任务F提交结果.docx】中对应的任务序号下。
根据任务E的图表,分析各省份的经济现状,公司决定挑选3个省份进行仓储建设,请问应该在哪些省份建设?将内容编写至客户端桌面【Release\任务F提交结果.docx】中对应的任务序号下。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。