赞
踩
ultralytics/cfg/models/rt-detr/rtdetr-r18.yaml(有预训练权重COCO+Objects365,来自RTDETR-Pytorch版本的移植)
rtdetr-r18 summary: 421 layers, 20184464 parameters, 20184464 gradients, 58.6 GFLOPs
ultralytics/cfg/models/rt-detr/rtdetr-r34.yaml(有预训练权重COCO,来自RTDETR-Pytorch版本的移植)
rtdetr-r34 summary: 525 layers, 31441668 parameters, 31441668 gradients, 90.6 GFLOPs
ultralytics/cfg/models/rt-detr/rtdetr-r50-m.yaml(有预训练权重COCO,来自RTDETR-Pytorch版本的移植)
rtdetr-r50-m summary: 637 layers, 36647020 parameters, 36647020 gradients, 98.3 GFLOPs
ultralytics/cfg/models/rt-detr/rtdetr-r50.yaml(有预训练权重COCO+Objects365,来自RTDETR-Pytorch版本的移植)
rtdetr-r50 summary: 629 layers, 42944620 parameters, 42944620 gradients, 134.8 GFLOPs
ultralytics/cfg/models/rt-detr/rtdetr-r101.yaml
rtdetr-r101 summary: 867 layers, 76661740 parameters, 76661740 gradients, 257.7 GFLOPs
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml(有预训练权重)
rtdetr-l summary: 673 layers, 32970732 parameters, 32970732 gradients, 108.3 GFLOPs
ultralytics/cfg/models/rt-detr/rtdetr-x.yaml(有预训练权重)
rtdetr-x summary: 867 layers, 67468108 parameters, 67468108 gradients, 232.7 GFLOPs
ultralytics/cfg/models/rt-detr/rtdetr-DCNV2-Dynamic.yaml
使用自研可变形卷积DCNV2-Dynamic改进resnet18-backbone中的BasicBlock.(详细介绍请看百度云视频-MPCA与DCNV2_Dynamic的说明)
ultralytics/cfg/models/rt-detr/rtdetr-iRMB-Cascaded.yaml
使用EfficientViT CVPR2023中的CascadedGroupAttention对EMO ICCV2023中的iRMB进行二次创新来改进resnet18-backbone中的BasicBlock.(详细介绍请看百度云视频-20231119更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-PConv-Rep.yaml
使用RepVGG CVPR2021中的RepConv对FasterNet CVPR2023中的PConv进行二次创新后改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-Faster-Rep.yaml
使用RepVGG CVPR2021中的RepConv对FasterNet CVPR2023中的Faster-Block进行二次创新后改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-Faster-EMA.yaml
使用EMA ICASSP2023对FasterNet CVPR2023中的Faster-Block进行二次创新后改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-Faster-Rep-EMA.yaml
使用RepVGG CVPR2021中的RepConv和EMA ICASSP2023对FasterNet CVPR2023中的Faster-Block进行二次创新后改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-DWRC3-DRB.yaml
使用UniRepLKNet中的DilatedReparamBlock对DWRSeg中的Dilation-wise Residual(DWR)进行二次创新改进rtdetr.
ultralytics/cfg/models/rt-detr/rtdetr-ASF-P2.yaml
在ultralytics/cfg/models/rt-detr/rtdetr-ASF.yaml的基础上进行二次创新,引入P2检测层并对网络结构进行优化.
ultralytics/cfg/models/rt-detr/rtdetr-slimneck-ASF.yaml
使用SlimNeck中的VoVGSCSP\VoVGSCSPC和GSConv和ASF-YOLO中的Attentional Scale Sequence Fusion改进rtdetr中的CCFM.
ultralytics/cfg/models/rt-detr/rtdetr-goldyolo-asf.yaml
利用华为2023最新GOLD-YOLO中的Gatherand-Distribute和ASF-YOLO中的Attentional Scale Sequence Fusion进行改进特征融合模块.
ultralytics/cfg/models/rt-detr/rtdetr-HSPAN.yaml
对MFDS-DETR中的HS-FPN进行二次创新后得到HSPAN改进RTDETR中的CCFM.
ultralytics/cfg/models/rt-detr/rtdetr-ASF-Dynamic.yaml
使用ICCV2023 DySample改进ASF-YOLO中的Attentional Scale Sequence Fusion的上采样模块得到Dynamic Sample Attentional Scale Sequence Fusion改进CCFM.
ultralytics/cfg/models/rt-detr/rtdetr-iRMB-DRB.yaml
使用UniRepLKNet中的DilatedReparamBlock对EMO ICCV2023中的iRMB进行二次创新来改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-iRMB-SWC.yaml
使用shift-wise conv对EMO ICCV2023中的iRMB进行二次创新来改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-DBBNCSPELAN.yaml
在rtdetr-RepNCSPELAN.yaml使用Diverse Branch Block CVPR2021进行二次创新.(详细介绍请看百度云视频-20240225更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-OREPANCSPELAN.yaml
在rtdetr-RepNCSPELAN.yaml使用Online Convolutional Re-parameterization (CVPR2022)进行二次创新.(详细介绍请看百度云视频-20240225更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-DRBNCSPELAN.yaml
在rtdetr-RepNCSPELAN.yaml使用UniRepLKNet中的DilatedReparamBlock进行二次创新.(详细介绍请看百度云视频-20240225更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-Conv3XCNCSPELAN.yaml
在rtdetr-RepNCSPELAN.yaml使用Swift Parameter-free Attention Network中的Conv3XC进行二次创新.(详细介绍请看百度云视频-20240225更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-ELA-HSFPN.yaml
使用Efficient Local Attention改进HSFPN.
ultralytics/cfg/models/rt-detr/rtdetr-CA-HSFPN.yaml
使用Coordinate Attention CVPR2021改进HSFPN.
ultralytics/cfg/models/rt-detr/rtdetr-RepNCSPELAN-CAA.yaml
使用CVPR2024 PKINet中的CAA模块改进RepNCSPELAN.
ultralytics/cfg/models/rt-detr/rtdetr-CAA-HSFPN.yaml
使用CVPR2024 PKINet中的CAA模块HSFPN.
ultralytics/cfg/models/rt-detr/rtdetr-CAFMFusion.yaml
利用具有HCANet中的CAFM,其具有获取全局和局部信息的注意力机制进行二次改进content-guided attention fusion.
ultralytics/cfg/models/rt-detr/rtdetr-faster-CGLU.yaml
使用TransNeXt CVPR2024中的Convolutional GLU对CVPR2023中的FasterNet进行二次创新.
ultralytics/cfg/models/rt-detr/rtdetr-PACAPN.yaml
自研结构, Parallel Atrous Convolution Attention Pyramid Network, PAC-APN
ultralytics/cfg/models/rt-detr/rtdetr-FDPN.yaml
自研特征聚焦扩散金字塔网络(Focusing Diffusion Pyramid Network)
ultralytics/cfg/models/rt-detr/rtdetr-FDPN-DASI.yaml
使用HCFNet中的Dimension-Aware Selective Integration Module对自研的Focusing Diffusion Pyramid Network再次创新.
ultralytics/cfg/models/rt-detr/rtdetr-RGCSPELAN.yaml
自研RepGhostCSPELAN.
ultralytics/cfg/models/rt-detr/rt-detr-timm.yaml
使用timm库系列的主干替换rtdetr的backbone.(基本支持现有CNN模型)
ultralytics/cfg/models/rt-detr/rt-detr-fasternet.yaml
使用FasterNet CVPR2023替换rtdetr的backbone.
ultralytics/cfg/models/rt-detr/rt-detr-EfficientViT.yaml
使用EfficientViT CVPR2023替换rtdetr的backbone.
ultralytics/cfg/models/rt-detr/rtdetr-convnextv2.yaml
使用ConvNextV2 2023替换rtdetr的backbone.
ultralytics/cfg/models/rt-detr/rtdetr-EfficientFormerv2.yaml
使用EfficientFormerv2 2022替换rtdetr的backbone.
ultralytics/cfg/models/rt-detr/rtdetr-repvit.yaml
使用RepViT ICCV2023替换rtdetr的backbone.
ultralytics/cfg/models/rt-detr/rtdetr-CSwomTramsformer.yaml
使用CSwinTramsformer CVPR2022替换rtdetr的backbone.
ultralytics/cfg/models/rt-detr/rtdetr-VanillaNet.yaml
使用VanillaNet 2023替换rtdetr的backbone.
ultralytics/cfg/models/rt-detr/rtdetr-SwinTransformer.yaml
使用SwinTransformer ICCV2021替换rtdetr的backbone.
ultralytics/cfg/models/rt-detr/rtdetr-lsknet.yaml
使用LSKNet ICCV2023替换rtdetr的backbone.
ultralytics/cfg/models/rt-detr/rt-detr-unireplknet.yaml
使用UniRepLKNet替换rtdetr的backbone.
ultralytics/cfg/models/rt-detr/rtdetr-TransNeXt.yaml
使用TransNeXt改进rtdetr的backbone.
ultralytics/cfg/models/rt-detr/rtdetr-RepNCSPELAN.yaml
使用YOLOV9中的RepNCSPELAN和ADown进行改进RTDETR-R18.
ultralytics/cfg/models/rt-detr/rtdetr-rmt.yaml
使用CVPR2024 RMT改进rtdetr的主干.
ultralytics/cfg/models/rt-detr/rtdetr-C2f-PKI.yaml
使用CVPR2024 PKINet中的PKIModule和CAA模块和C2f改进backbone.
ultralytics/cfg/models/rt-detr/rtdetr-C2f-PPA.yaml
使用HCFNet中的Parallelized Patch-Aware Attention Module改进C2f.
ultralytics/cfg/models/rt-detr/rtdetr-mobilenetv4.yaml
使用MobileNetV4改进rtdetr-backbone.
ultralytics/cfg/models/rt-detr/rtdetr-starnet.yaml
使用StarNet CVPR2024改进yolov8-backbone.
ultralytics/cfg/models/rt-detr/rtdetr-AIFI-LPE.yaml
使用LearnedPositionalEncoding改进AIFI中的位置编码生成.(详细介绍请看百度云视频-20231119更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-CascadedGroupAttention.yaml
使用EfficientViT CVPR2023中的CascadedGroupAttention改进rtdetr中的AIFI.(详细请看百度云视频-rtdetr-CascadedGroupAttention说明)
ultralytics/cfg/models/rt-detr/rtdetr-AIFI-DAttention.yaml
使用Vision Transformer with Deformable Attention CVPR2022中的DAttention改进AIFI.
ultralytics/cfg/models/rt-detr/rtdetr-AIFI-HiLo.yaml
使用LITv2中具有提取高低频信息的高效注意力对AIFI进行二次改进.
ultralytics/cfg/models/rt-detr/rtdetr-ASF.yaml
使用ASF-YOLO中的Attentional Scale Sequence Fusion来改进rtdetr.
ultralytics/cfg/models/rt-detr/rtdetr-slimneck.yaml
使用SlimNeck中的VoVGSCSP\VoVGSCSPC和GSConv改进rtdetr中的CCFM.
ultralytics/cfg/models/rt-detr/rtdetr-SDI.yaml
使用U-NetV2中的 Semantics and Detail Infusion Module对CCFM中的feature fusion进行改进.
ultralytics/cfg/models/rt-detr/rtdetr-goldyolo.yaml
利用华为2023最新GOLD-YOLO中的Gatherand-Distribute进行改进特征融合模块.
ultralytics/cfg/models/rt-detr/rtdetr-HSFPN.yaml
使用MFDS-DETR中的HS-FPN改进RTDETR中的CCFM.
ultralytics/cfg/models/rt-detr/rtdetr-bifpn.yaml
添加BIFPN到rtdetr-r18中.
其中BIFPN中有三个可选参数:
ultralytics/cfg/models/rt-detr/rtdetr-CSFCN.yaml
使用Context and Spatial Feature Calibration for Real-Time Semantic Segmentation中的Context and Spatial Feature Calibration模块改进rtdetr-neck.
ultralytics/cfg/models/rt-detr/rtdetr-CGAFusion.yaml
使用DEA-Net中的content-guided attention fusion改进rtdetr-neck.
ultralytics/cfg/models/rt-detr/rtdetr-SDFM.yaml
使用PSFusion中的superficial detail fusion module改进rtdetr-neck.
ultralytics/cfg/models/rt-detr/rtdetr-PSFM.yaml
使用PSFusion中的profound semantic fusion module改进yolov8-neck.
ultralytics/cfg/models/rt-detr/rtdetr-p2.yaml
添加小目标检测头P2到TransformerDecoderHead中.
ultralytics/cfg/models/rt-detr/rtdetr-DWRC3.yaml
使用DWRSeg中的Dilation-wise Residual(DWR)模块构建DWRC3改进rtdetr.
ultralytics/cfg/models/rt-detr/rtdetr-Conv3XCC3.yaml
使用Swift Parameter-free Attention Network中的Conv3XC改进RepC3.
ultralytics/cfg/models/rt-detr/rtdetr-DRBC3.yaml
使用UniRepLKNet中的DilatedReparamBlock改进RepC3.
ultralytics/cfg/models/rt-detr/rtdetr-DBBC3.yaml
使用DiverseBranchBlock CVPR2021改进RepC3.
ultralytics/cfg/models/rt-detr/rtdetr-DGCST.yaml
使用Lightweight Object Detection中的Dynamic Group Convolution Shuffle Transformer改进rtdetr-r18.
ultralytics/cfg/models/rt-detr/rtdetr-DGCST2.yaml
使用Lightweight Object Detection中的Dynamic Group Convolution Shuffle Transformer与Dynamic Group Convolution Shuffle Module进行结合改进rtdetr-r18.
ultralytics/cfg/models/rt-detr/rtdetr-RetBlockC3.yaml
使用CVPR2024 RMT中的RetBlock改进RepC3.
ultralytics/cfg/models/rt-detr/rtdetr-Ortho.yaml
使用OrthoNets中的正交通道注意力改进resnet18-backbone中的BasicBlock.(详细介绍请看百度云视频-20231119更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-DCNV2.yaml
使用可变形卷积DCNV2改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-DCNV3.yaml
使用可变形卷积DCNV3 CVPR2023改进resnet18-backbone中的BasicBlock.(安装教程请看百度云视频-20231119更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-iRMB.yaml
使用EMO ICCV2023中的iRMB改进resnet18-backbone中的BasicBlock.(详细介绍请看百度云视频-20231119更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-DySnake.yaml
添加DySnakeConv到resnet18-backbone中的BasicBlock中.
ultralytics/cfg/models/rt-detr/rtdetr-PConv.yaml
使用FasterNet CVPR2023中的PConv改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-Faster.yaml
使用FasterNet CVPR2023中的Faster-Block改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-AKConv.yaml
使用AKConv 2023改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-RFAConv.yaml
使用RFAConv 2023改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-RFCAConv.yaml
使用RFCAConv 2023改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-RFCBAMConv.yaml
使用RFCBAMConv 2023改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-Conv3XC.yaml
使用Swift Parameter-free Attention Network中的Conv3XC改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-DRB.yaml
使用UniRepLKNet中的DilatedReparamBlock改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-DBB.yaml
使用DiverseBranchBlock CVPR2021改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-DualConv.yaml
使用DualConv改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-AggregatedAtt.yaml
使用TransNeXt中的聚合感知注意力改进resnet18中的BasicBlock.(百度云视频-20240106更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-DCNV4.yaml
使用DCNV4改进resnet18中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-SWC.yaml
使用shift-wise conv改进resnet18中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-VSS.yaml
使用最新的Mamba架构Mamba-UNet中的VSS改进resnet18-backbone中的BasicBlock.
ultralytics/cfg/models/rt-detr/rtdetr-ContextGuided.yaml
使用CGNet中的Light-weight Context Guided和Light-weight Context Guided DownSample改进rtdetr-r18.
ultralytics/cfg/models/rt-detr/rtdetr-fadc.yaml
使用CVPR2024 Frequency-Adaptive Dilated Convolution改进resnet18-basicblock.
ultralytics/cfg/models/rt-detr/rtdetr-Star.yaml
使用StarNet CVPR2024中的StarBlock改进resnet18-basicblock.
ultralytics/cfg/models/rt-detr/rtdetr-DySample.yaml
使用ICCV2023 DySample改进CCFM中的上采样.
ultralytics/cfg/models/rt-detr/rtdetr-CARAFE.yaml
使用ICCV2019 CARAFE改进CCFM中的上采样.
ultralytics/cfg/models/rt-detr/rtdetr-HWD.yaml
使用Haar wavelet downsampling改进CCFM的下采样.
ultralytics/cfg/models/rt-detr/rtdetr-ContextGuidedDown.yaml
使用CGNet中的Light-weight Context Guided DownSample改进rtdetr-r18.
ultralytics/cfg/models/rt-detr/rtdetr-SRFD.yaml
使用A Robust Feature Downsampling Module for Remote Sensing Visual Tasks改进rtdetr的下采样.
ultralytics/cfg/models/rt-detr/rtdetr-l-GhostHGNetV2.yaml
使用GhostConv改进HGNetV2.(详细介绍请看百度云视频-20231109更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-l-RepHGNetV2.yaml
使用RepConv改进HGNetV2.(详细介绍请看百度云视频-20231109更新说明)
ultralytics/cfg/models/rt-detr/rtdetr-l-attention.yaml
添加注意力模块到HGBlock中.(手把手教程请看百度云视频-手把手添加注意力教程)
ultralytics/cfg/models/yolo-detr/yolov8-detr.yaml
使用RT-DETR中的TransformerDecoderHead改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-DWR.yaml
使用RT-DETR中的TransformerDecoderHead和DWRSeg中的Dilation-wise Residual(DWR)模块改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-fasternet.yaml
使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023改进yolov8.(支持替换其他主干,请看百度云视频-替换主干示例教程)
ultralytics/cfg/models/yolo-detr/yolov8-detr-AIFI-LPE.yaml
使用RT-DETR中的TransformerDecoderHead和LearnedPositionalEncoding改进yolov8.(详细介绍请看百度云视频-20231119更新说明)
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV2.yaml
使用RT-DETR中的TransformerDecoderHead和可变形卷积DCNV2改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV3.yaml
使用RT-DETR中的TransformerDecoderHead和可变形卷积DCNV3 CVPR2023改进yolov8.(安装教程请看百度云视频-20231119更新说明)
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV2-Dynamic.yaml
使用RT-DETR中的TransformerDecoderHead和自研可变形卷积DCNV2-Dynamic改进yolov8.(详细介绍请看百度云视频-MPCA与DCNV2_Dynamic的说明)
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Ortho.yaml
使用RT-DETR中的TransformerDecoderHead和OrthoNets中的正交通道注意力改进yolov8.(详细介绍请看百度云视频-20231119更新说明)
ultralytics/cfg/models/yolo-detr/yolov8-detr-attention.yaml
添加注意力到基于RTDETR-Head中的yolov8中.(手把手教程请看百度云视频-手把手添加注意力教程)
ultralytics/cfg/models/yolo-detr/yolov8-detr-p2.yaml
添加小目标检测头P2到TransformerDecoderHead中.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DySnake.yaml
DySnakeConv与C2f融合.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Faster.yaml
使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中的Faster-Block改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Faster-Rep.yaml
使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与RepVGG CVPR2021中的RepConv二次创新后的Faster-Block-Rep改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Faster-EMA.yaml
使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与EMA ICASSP2023二次创新后的Faster-Block-EMA的Faster-Block-EMA改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Faster-Rep-EMA.yaml
使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与RepVGG CVPR2021中的RepConv、EMA ICASSP2023二次创新后的Faster-Block改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-AKConv.yaml
使用RT-DETR中的TransformerDecoderHead和AKConv 2023改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-RFAConv.yaml
使用RT-DETR中的TransformerDecoderHead和RFAConv 2023改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-RFAConv.yaml
使用RT-DETR中的TransformerDecoderHead和RFCAConv 2023改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-RFAConv.yaml
使用RT-DETR中的TransformerDecoderHead和RFCBAMConv 2023改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Conv3XC.yaml
使用RT-DETR中的TransformerDecoderHead和Swift Parameter-free Attention Network中的Conv3XC改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-SPAB.yaml
使用RT-DETR中的TransformerDecoderHead和Swift Parameter-free Attention Network中的SPAB改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DRB.yaml
使用RT-DETR中的TransformerDecoderHead和UniRepLKNet中的DilatedReparamBlock改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-UniRepLKNetBlock.yaml
使用RT-DETR中的TransformerDecoderHead和UniRepLKNet中的UniRepLKNetBlock改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-DWR-DRB.yaml
使用UniRepLKNet中的DilatedReparamBlock对DWRSeg中的Dilation-wise Residual(DWR)进行二次创新改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DBB.yaml
使用RT-DETR中的TransformerDecoderHead和DiverseBranchBlock CVPR2021改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-CSP-EDLAN.yaml
使用RT-DETR中的TransformerDecoderHead和DualConv打造CSP Efficient Dual Layer Aggregation Networks改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-ASF.yaml
使用RT-DETR中的TransformerDecoderHead和ASF-YOLO中的Attentional Scale Sequence Fusion改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-ASF-P2.yaml
在ultralytics/cfg/models/yolo-detr/yolov8-detr-ASF.yaml的基础上进行二次创新,引入P2检测层并对网络结构进行优化.
ultralytics/cfg/models/yolo-detr/yolov8-detr-slimneck.yaml
使用RT-DETR中的TransformerDecoderHead和SlimNeck中VoVGSCSP\VoVGSCSPC和GSConv改进yolov8的neck.
ultralytics/cfg/models/yolo-detr/yolov8-detr-slimneck-asf.yaml
在ultralytics/cfg/models/yolo-detr/yolov8-detr-slimneck.yaml使用ASF-YOLO中的Attentional Scale Sequence Fusion进行二次创新.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-AggregatedAtt.yaml
使用RT-DETR中的TransformerDecoderHead和TransNeXt中的聚合感知注意力改进C2f.(百度云视频-20240106更新说明)
ultralytics/cfg/models/yolo-detr/yolov8-detr-SDI.yaml
使用RT-DETR中的TransformerDecoderHead和U-NetV2中的 Semantics and Detail Infusion Module对yolov8中的feature fusion进行改进.
ultralytics/cfg/models/yolo-detr/yolov8-detr-goldyolo.yaml
利用RT-DETR中的TransformerDecoderHead和华为2023最新GOLD-YOLO中的Gatherand-Distribute进行改进特征融合模块.
ultralytics/cfg/models/yolo-detr/yolov8-detr-goldyolo-asf.yaml
利用RT-DETR中的TransformerDecoderHead和华为2023最新GOLD-YOLO中的Gatherand-Distribute和ASF-YOLO中的Attentional Scale Sequence Fusion进行改进特征融合模块.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV4.yaml
使用DCNV4改进C2f.
ultralytics/cfg/models/yolo-detr/yolov8-detr-HSFPN.yaml
利用RT-DETR中的TransformerDecoderHead和使用MFDS-DETR中的HS-FPN改进YOLOV8中的PAN.
ultralytics/cfg/models/yolo-detr/yolov8-detr-HSPAN.yaml
利用RT-DETR中的TransformerDecoderHead和对MFDS-DETR中的HS-FPN进行二次创新后得到HSPAN改进YOLOV8中的PAN.
ultralytics/cfg/models/yolo-detr/yolov8-detr-Dysample.yaml
使用ICCV2023 DySample改进yolov8-detr neck中的上采样.
ultralytics/cfg/models/yolo-detr/yolov8-detr-CARAFE.yaml
使用ICCV2019 CARAFE改进yolov8-detr neck中的上采样.
ultralytics/cfg/models/yolo-detr/yolov8-detr-HWD.yaml
使用Haar wavelet downsampling改进yolov8-detr neck的下采样.
ultralytics/cfg/models/yolo-detr/yolov8-detr-ASF-Dynamic.yaml
使用ICCV2023 DySample改进ASF-YOLO中的Attentional Scale Sequence Fusion的上采样模块得到Dynamic Sample Attentional Scale Sequence Fusion改进yolov8-detr中的neck.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-SWC.yaml
使用shift-wise conv改进yolov8-detr中的C2f.
ultralytics/cfg/models/yolo-detr/yolov8-detr-iRMB-DRB.yaml
使用UniRepLKNet中的DilatedReparamBlock对EMO ICCV2023中的iRMB进行二次创新来改进yolov8-detr中的C2f.
ultralytics/cfg/models/yolo-detr/yolov8-detr-iRMB-SWC.yaml
使用shift-wise conv对EMO ICCV2023中的iRMB进行二次创新来改进yolov8-detr中的C2f.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-VSS.yaml
使用最新的Mamba架构Mamba-UNet中的VSS对C2f中的BottleNeck进行改进,使其能更有效地捕获图像中的复杂细节和更广泛的语义上下文.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-LVMB.yaml
使用最新的Mamba架构Mamba-UNet中的VSS与Cross Stage Partial进行结合,使其能更有效地捕获图像中的复杂细节和更广泛的语义上下文.
ultralytics/cfg/models/yolo-detr/yolov8-detr-RepNCSPELAN.yaml
使用YOLOV9中的RepNCSPELAN进行改进yolov8-detr.
ultralytics/cfg/models/yolo-detr/yolov8-detr-bifpn.yaml
添加BIFPN到yolov8中.
其中BIFPN中有三个可选参数:
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-ContextGuided.yaml
使用CGNet中的Light-weight Context Guided和Light-weight Context Guided DownSample改进yolov8-detr.
ultralytics/cfg/models/yolo-detr/yolov8-detr-PACAPN.yaml
自研结构, Parallel Atrous Convolution Attention Pyramid Network, PAC-APN
ultralytics/cfg/models/yolo-detr/yolov8-detr-DGCST.yaml
使用Lightweight Object Detection中的Dynamic Group Convolution Shuffle Transformer改进yolov8-detr.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-RetBlock.yaml
使用CVPR2024 RMT中的RetBlock改进C2f.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-PKI.yaml
使用CVPR2024 PKINet中的PKIModule和CAA模块改进C2f.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-fadc.yaml
ultralytics/cfg/models/yolo-detr/yolov8-detr-FDPN.yaml
自研特征聚焦扩散金字塔网络(Focusing Diffusion Pyramid Network)
ultralytics/cfg/models/yolo-detr/yolov8-detr-FDPN-DASI.yaml
使用HCFNet中的Dimension-Aware Selective Integration Module对自研的Focusing Diffusion Pyramid Network再次创新.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-PPA.yaml
使用HCFNet中的Parallelized Patch-Aware Attention Module改进C2f.
ultralytics/cfg/models/yolo-detr/yolov8-detr-SRFD.yaml
使用A Robust Feature Downsampling Module for Remote Sensing Visual Tasks改进yolov8的下采样.
ultralytics/cfg/models/yolo-detr/yolov8-detr-CSFCN.yaml
使用Context and Spatial Feature Calibration for Real-Time Semantic Segmentation中的Context and Spatial Feature Calibration模块改进yolov8.
ultralytics/cfg/models/yolo-detr/yolov8-detr-CGAFusion.yaml
使用DEA-Net中的content-guided attention fusion改进yolov8-neck.
ultralytics/cfg/models/yolo-detr/yolov8-detr-CAFMFusion.yaml
利用具有HCANet中的CAFM,其具有获取全局和局部信息的注意力机制进行二次改进content-guided attention fusion.
ultralytics/cfg/models/yolo-detr/yolov8-detr-RGCSPELAN.yaml
自研RepGhostCSPELAN.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Faster-CGLU.yaml
使用TransNeXt CVPR2024中的Convolutional GLU对CVPR2023中的FasterNet进行二次创新.
ultralytics/cfg/models/yolo-detr/yolov8-detr-SDFM.yaml
使用PSFusion中的superficial detail fusion module改进yolov8-neck.
ultralytics/cfg/models/yolo-detr/yolov8-detr-PSFM.yaml
使用PSFusion中的profound semantic fusion module改进yolov8-neck.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Star.yaml
使用StarNet CVPR2024中的StarBlock改进C2f.
ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Star-CAA.yaml
使用StarNet CVPR2024中的StarBlock和CVPR2024 PKINet中的CAA改进C2f.
ultralytics/cfg/models/yolo-detr/yolov5-detr.yaml
使用RT-DETR中的TransformerDecoderHead改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-DWR.yaml
使用RT-DETR中的TransformerDecoderHead和DWRSeg中的Dilation-wise Residual(DWR)模块改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-fasternet.yaml
使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023改进yolov5.(支持替换其他主干,请看百度云视频-替换主干示例教程)
ultralytics/cfg/models/yolo-detr/yolov5-detr-AIFI-LPE.yaml
使用RT-DETR中的TransformerDecoderHead和LearnedPositionalEncoding改进yolov5.(详细介绍请看百度云视频-20231119更新说明)
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV2.yaml
使用RT-DETR中的TransformerDecoderHead和可变形卷积DCNV2改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV3.yaml
使用RT-DETR中的TransformerDecoderHead和可变形卷积DCNV3 CVPR2023改进yolov5.(安装教程请看百度云视频-20231119更新说明)
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV2-Dynamic.yaml
使用RT-DETR中的TransformerDecoderHead和自研可变形卷积DCNV2-Dynamic改进yolov5.(详细介绍请看百度云视频-MPCA与DCNV2_Dynamic的说明)
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Ortho.yaml(详细介绍请看百度云视频-20231119更新说明)
使用RT-DETR中的TransformerDecoderHead和OrthoNets中的正交通道注意力改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-attention.yaml
添加注意力到基于RTDETR-Head中的yolov5中.(手把手教程请看百度云视频-手把手添加注意力教程)
ultralytics/cfg/models/yolo-detr/yolov5-detr-p2.yaml
添加小目标检测头P2到TransformerDecoderHead中.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DySnake.yaml
DySnakeConv与C3融合.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Faster.yaml
使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中的Faster-Block改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Faster-Rep.yaml
使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与RepVGG CVPR2021中的RepConv二次创新后的Faster-Block-Rep改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Faster-EMA.yaml
使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与EMA ICASSP2023二次创新后的Faster-Block-EMA的Faster-Block-EMA改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Faster-Rep-EMA.yaml
使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与RepVGG CVPR2021中的RepConv、EMA ICASSP2023二次创新后的Faster-Block改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-AKConv.yaml
使用RT-DETR中的TransformerDecoderHead和AKConv 2023改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-RFAConv.yaml
使用RT-DETR中的TransformerDecoderHead和RFAConv 2023改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-RFAConv.yaml
使用RT-DETR中的TransformerDecoderHead和RFCAConv 2023改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-RFAConv.yaml
使用RT-DETR中的TransformerDecoderHead和RFCBAMConv 2023改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Conv3XC.yaml
使用RT-DETR中的TransformerDecoderHead和Swift Parameter-free Attention Network中的Conv3XC改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-SPAB.yaml
使用RT-DETR中的TransformerDecoderHead和Swift Parameter-free Attention Network中的SPAB改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DRB.yaml
使用RT-DETR中的TransformerDecoderHead和UniRepLKNet中的DilatedReparamBlock改进改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-UniRepLKNetBlock.yaml
使用RT-DETR中的TransformerDecoderHead和UniRepLKNet中的UniRepLKNetBlock改进改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-DWR-DRB.yaml
使用UniRepLKNet中的DilatedReparamBlock对DWRSeg中的Dilation-wise Residual(DWR)进行二次创新改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DBB.yaml
使用RT-DETR中的TransformerDecoderHead和DiverseBranchBlock CVPR2021改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-CSP-EDLAN.yaml
使用RT-DETR中的TransformerDecoderHead和DualConv打造CSP Efficient Dual Layer Aggregation Networks改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-ASF.yaml
使用RT-DETR中的TransformerDecoderHead和ASF-YOLO中的Attentional Scale Sequence Fusion改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-ASF-P2.yaml
在ultralytics/cfg/models/yolo-detr/yolov5-detr-ASF.yaml的基础上进行二次创新,引入P2检测层并对网络结构进行优化.
ultralytics/cfg/models/yolo-detr/yolov5-detr-slimneck.yaml
使用RT-DETR中的TransformerDecoderHead和SlimNeck中VoVGSCSP\VoVGSCSPC和GSConv改进yolov5的neck.
ultralytics/cfg/models/yolo-detr/yolov5-detr-slimneck-asf.yaml
在ultralytics/cfg/models/yolo-detr/yolov5-detr-slimneck.yaml使用ASF-YOLO中的Attentional Scale Sequence Fusion进行二次创新.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-AggregatedAtt.yaml
使用RT-DETR中的TransformerDecoderHead和TransNeXt中的聚合感知注意力改进C3.(百度云视频-20240106更新说明)
ultralytics/cfg/models/yolo-detr/yolov5-detr-SDI.yaml
使用RT-DETR中的TransformerDecoderHead和U-NetV2中的 Semantics and Detail Infusion Module对yolov5中的feature fusion进行改进.
ultralytics/cfg/models/yolo-detr/yolov5-detr-goldyolo.yaml
利用RT-DETR中的TransformerDecoderHead和华为2023最新GOLD-YOLO中的Gatherand-Distribute进行改进特征融合模块.
ultralytics/cfg/models/yolo-detr/yolov5-detr-goldyolo-asf.yaml
利用RT-DETR中的TransformerDecoderHead和华为2023最新GOLD-YOLO中的Gatherand-Distribute和ASF-YOLO中的Attentional Scale Sequence Fusion进行改进特征融合模块.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV4.yaml
使用DCNV4改进C3.
ultralytics/cfg/models/yolo-detr/yolov5-detr-HSFPN.yaml
利用RT-DETR中的TransformerDecoderHead和使用MFDS-DETR中的HS-FPN改进YOLOV5中的PAN.
ultralytics/cfg/models/yolo-detr/yolov5-detr-HSPAN.yaml
利用RT-DETR中的TransformerDecoderHead和对MFDS-DETR中的HS-FPN进行二次创新后得到HSPAN改进YOLOV5中的PAN.
ultralytics/cfg/models/yolo-detr/yolov8-detr-Dysample.yaml
使用ICCV2023 DySample改进yolov8-detr neck中的上采样.
ultralytics/cfg/models/yolo-detr/yolov8-detr-CARAFE.yaml
使用ICCV2019 CARAFE改进yolov8-detr neck中的上采样.
ultralytics/cfg/models/yolo-detr/yolov8-detr-HWD.yaml
使用Haar wavelet downsampling改进yolov8-detr neck的下采样.
ultralytics/cfg/models/yolo-detr/yolov5-detr-ASF-Dynamic.yaml
使用ICCV2023 DySample改进ASF-YOLO中的Attentional Scale Sequence Fusion的上采样模块得到Dynamic Sample Attentional Scale Sequence Fusion改进yolov5-detr中的neck.
ultralytics/cfg/models/yolo-detr/yolov5-detr-SWC.yaml
使用shift-wise conv改进yolov5-detr中的C3.
ultralytics/cfg/models/yolo-detr/yolov5-detr-iRMB-DRB.yaml
使用UniRepLKNet中的DilatedReparamBlock对EMO ICCV2023中的iRMB进行二次创新来改进yolov5-detr中的C2f.
ultralytics/cfg/models/yolo-detr/yolov5-detr-iRMB-SWC.yaml
使用shift-wise conv对EMO ICCV2023中的iRMB进行二次创新来改进yolov5-detr中的C2f.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-VSS.yaml
使用最新的Mamba架构Mamba-UNet中的VSS对C3中的BottleNeck进行改进,使其能更有效地捕获图像中的复杂细节和更广泛的语义上下文.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-LVMB.yaml
使用最新的Mamba架构Mamba-UNet中的VSS与Cross Stage Partial进行结合,使其能更有效地捕获图像中的复杂细节和更广泛的语义上下文.
ultralytics/cfg/models/yolo-detr/yolov5-detr-RepNCSPELAN.yaml
使用YOLOV9中的RepNCSPELAN进行改进yolov5-detr.
ultralytics/cfg/models/yolo-detr/yolov5-detr-bifpn.yaml
添加BIFPN到yolov8中.
其中BIFPN中有三个可选参数:
ultralytics/cfg/models/yolo-detr/yolov5-detr-C2f-ContextGuided.yaml
使用CGNet中的Light-weight Context Guided和Light-weight Context Guided DownSample改进yolov5-detr.
ultralytics/cfg/models/yolo-detr/yolov5-detr-PACAPN.yaml
自研结构, Parallel Atrous Convolution Attention Pyramid Network, PAC-APN
ultralytics/cfg/models/yolo-detr/yolov5-detr-DGCST.yaml
使用Lightweight Object Detection中的Dynamic Group Convolution Shuffle Transformer改进yolov5-detr.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-RetBlock.yaml
使用CVPR2024 RMT中的RetBlock改进C3.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-PKI.yaml
使用CVPR2024 PKINet中的PKIModule和CAA模块改进C3.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-fadc.yaml
ultralytics/cfg/models/yolo-detr/yolov5-detr-FDPN.yaml
自研特征聚焦扩散金字塔网络(Focusing Diffusion Pyramid Network)
ultralytics/cfg/models/yolo-detr/yolov5-detr-FDPN-DASI.yaml
使用HCFNet中的Dimension-Aware Selective Integration Module对自研的Focusing Diffusion Pyramid Network再次创新.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-PPA.yaml
使用HCFNet中的Parallelized Patch-Aware Attention Module改进C3.
ultralytics/cfg/models/yolo-detr/yolov5-detr-SRFD.yaml
使用A Robust Feature Downsampling Module for Remote Sensing Visual Tasks改进yolov5的下采样.
ultralytics/cfg/models/yolo-detr/yolov5-detr-CSFCN.yaml
使用Context and Spatial Feature Calibration for Real-Time Semantic Segmentation中的Context and Spatial Feature Calibration模块改进yolov5.
ultralytics/cfg/models/yolo-detr/yolov5-detr-CGAFusion.yaml
使用DEA-Net中的content-guided attention fusion改进yolov5-neck.
ultralytics/cfg/models/yolo-detr/yolov5-detr-CAFMFusion.yaml
利用具有HCANet中的CAFM,其具有获取全局和局部信息的注意力机制进行二次改进content-guided attention fusion.
ultralytics/cfg/models/yolo-detr/yolov5-detr-RGCSPELAN.yaml
自研RepGhostCSPELAN.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Faster-CGLU.yaml
使用TransNeXt CVPR2024中的Convolutional GLU对CVPR2023中的FasterNet进行二次创新.
ultralytics/cfg/models/yolo-detr/yolov5-detr-SDFM.yaml
使用PSFusion中的superficial detail fusion module改进yolov5-neck.
ultralytics/cfg/models/yolo-detr/yolov5-detr-PSFM.yaml
使用PSFusion中的profound semantic fusion module改进yolov5-neck.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Star.yaml
使用StarNet CVPR2024中的StarBlock改进C3.
ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Star-CAA.yaml
使用StarNet CVPR2024中的StarBlock和CVPR2024 PKINet中的CAA改进C3.
20231105-rtdetr-v1.0
20231109-rtdetr-v1.1
20231119-rtdetr-v1.2
20231126-rtdetr-v1.3
20231202-rtdetr-v1.4
20231210-rtdetr-v1.5
20231214-rtdetr-v1.6
20231223-rtdetr-v1.7
20240106-rtdetr-v1.8
20240113-rtdetr-v1.9
20240120-rtdetr-v1.10
20240128-rtdetr-v1.11
20240206-rtdetr-v1.12
20240219-rtdetr-v1.13
20240225-rtdetr-v1.14
20240302-rtdetr-v1.15
20240307-rtdetr-v1.16
20240321-rtdetr-v1.17
20240404-rtdetr-v1.18
20240412-rtdetr-v1.19
20240427-rtdetr-v1.20
20240502-rtdetr-v1.21
20240518-rtdetr-v1.22
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。