当前位置:   article > 正文

Python做曲线拟合(一元多项式拟合及任意函数拟合)_python拟合函数

python拟合函数

目录

1. 一元多项式拟合

使用方法 np.polyfit(x, y, deg)

2. 任意函数拟合

使用 curve_fit() 方法

实例:

(1)初始化 x 和 y 数据集

(2)建立自定义函数

(3)使用自定义的函数生成拟合函数绘图 


1. 一元多项式拟合

使用方法 np.polyfit(x, y, deg)

polyfig 使用的是最小二乘法,用于拟合一元多项式函数。

参数说明: x 就是x坐标,y 就是y坐标,deg 为拟合多项式的次数

实例:

根据 ti yi 两个列表来得到 一元二次多项式拟合函数 (deg为2)

  1. import matplotlib.pyplot as plt
  2. import numpy as np
  3. import pylab as mpl
  4. ti = [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8]
  5. yi = [33.40, 79.50, 122.65, 159.05, 189.15, 214.15, 238.65, 252.2, 267.55, 280.50, 296.65, 301.65, 310.4, 318.15, 325.15]
  6. z1 = np.polyfit(ti, yi, 2)
  7. print(z1)

输出结果:

分别是二次多项式的 3 个系数,y = ax^2 + bx + c

2. 任意函数拟合

使用 curve_fit() 方法

curve_fit() 使用是非线性最小二乘法将函数进行拟合,适用范围:多元、任意函数

scipy.optimize.curve_fit(f,xdata,ydata,p0 = None

常用参数说明:

  1. f: 模型函数f(x,…)。它必须将自变量作为第一个参数,其余你需要求的参数都放后面
  2. xdata: 数组对象,测量数据的自变量。
  3. ydata: 数组对象,因变量。
  4. p0:参数的初始猜测(长度 N),如果为None,则初始值为1(如果可以使用自省来确定函数的参数数量,否则会引发 ValueError)。

 返回值:

  1. popt: 数组,参数的最佳值,以使的平方残差之和最小。f(xdata, *popt) - ydata
  2. pcov: 二维阵列,popt的估计协方差。对角线提供参数估计的方差。

实例:

(1)初始化 x 和 y 数据集

x 为 0~19(包括0和19),y=2x^2 + (二十个0~100范围内的随机数

  1. import numpy as np
  2. x = np.arange(0,20)
  3. y = 2 * x ** 2 + np.random.randint(0, 100, 20)
  4. #z = 2 * x ** 2 + np.random.randint(0, 100, (1,20))[0]

如图为生成 x 列表和 y 列表的值(具有随机性):

 补充一下 np.random.randint()用法:

numpy.random.randint(low, high=None, size=None, dtype=int)

参数说明:

1. low: int 生成的数值的最小值(包含),默认为0,可省略。
2. high: int 生成的数值的最大值(不包含)
3. size: int or tuple of ints 随机数的尺寸, 默认是返回单个,输入 20 返回 20个,输入 (3,4) 返回的是一个 3*4 的二维数组。(可选)。
4. dtype:想要输出的结果类型。默认值为int。(可选,一般用不上)。

(2)建立自定义函数

 定义函数  y=ax^2

  1. #变量一定要放在第一个位置
  2. def func(x, a):
  3. return a*x**2
  4. popt, pcov = curve_fit(func, x, y, p0=1) #p0 = 1是因为只有a一参数
  5. print(popt) #即参数a的最佳值
  6. print(pcov)

输出结果:

 定义函数 y=2x^2+bx+c

  1. #变量一定要放在第一个位置
  2. def func(x, a, b, c):
  3. return a*x**2 + b*x + c
  4. popt, pcov = curve_fit(func, x, y) #p0 = 1是因为只有a一参数
  5. print(popt) #即参数a的最佳值
  6. print(pcov)

输出结果:

(3)使用自定义的函数生成拟合函数绘图 

对第二个拟合函数绘图:

完整代码:

注意:在画图是可能会出现坐标中文乱码的问题,需要加入以下几行:

import pylab as mpl

mpl.rcParams['font.sans-serif'] = ['SimHei']  # 解决中文不显示问题 plt.rcParams['axes.unicode_minus']=False  #解决负数坐标显示问题

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. from scipy.optimize import curve_fit
  4. import pylab as mpl
  5. mpl.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文不显示问题
  6. plt.rcParams['axes.unicode_minus']=False #解决负数坐标显示问题
  7. x = np.arange(0,20)
  8. y = 2 * x ** 2 + np.random.randint(0, 100, 20)
  9. z = 2 * x ** 2 + np.random.randint(0, 100, (1,20))[0]
  10. print(x)
  11. print(y)
  12. #变量一定要放在第一个位置
  13. def func(x, a, b, c):
  14. return a*x**2 + b*x + c
  15. popt, pcov = curve_fit(func, x, y) #p0 = 1是因为只有a一参数
  16. print(popt) #即参数a的最佳值
  17. print(pcov)
  18. #popt[0],popt[1],popt[2]分别代表参数a b c
  19. y2 = func(x,popt[0],popt[1],popt[2])
  20. plt.scatter(x, y, marker='x',lw=1,label='原始数据')
  21. plt.plot(x,y2,c='r',label='拟合曲线')
  22. plt.legend() # 显示label
  23. plt.show()

运行结果:

 


 使用指数函数:

y = ae^(bx)

绘图效果:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/102088
推荐阅读
相关标签
  

闽ICP备14008679号