当前位置:   article > 正文

TransReID | 首次将transformer应用于行人重识别

transreid

0x00 什么是Transformer

Transformer由Attention is all you need论文提出。

摘要

优势的序列转换模型基于复杂的递归或卷积神经网络,包括一个编码器和一个解码器。性能最好的模型还通过注意力机制连接编码器和解码器。我们提出了一种新的简单网络架构,即Transformer,它完全基于注意力机制,完全省去了递归和卷积。在两个机器翻译任务上的实验表明,这些模型在质量上优越,同时更具并行性,并且需要更少的训练时间。

结构

每个子层都存在残差连接
在这里插入图片描述
编码组件部分由一堆编码器(encoder)构成,解码组件部分也是由相同数量(与编码器对应)的解码器(decoder)组成的。所有的编码器在结构上都是相同的,但它们没有共享参数。每个解码器都可以分解成两个子层。解码器中也有编码器的自注意力(self-attention)层和前馈(feed-forward)层。除此之外,这两个层之间还有一个注意力层,用来关注输入句子的相关部分。

quoted from 小白看得懂的Transformer

所以,模型的主要部分

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/136606
推荐阅读
相关标签