当前位置:   article > 正文

matlab BP网络工具箱分类与回归

matlabbpnn工具箱使用实现分类

一、分类:

1、参考:http://www.cnblogs.com/heaad/archive/2011/03/07/1976443.html

例子:

%读取训练数据
[f1,f2,f3,f4,class] = textread('trainData.txt' , '%f%f%f%f%f',150);

%特征值归一化
[input,minI,maxI] = premnmx( [f1 , f2 , f3 , f4 ]')  ;

%构造输出矩阵
s = length( class) ;
output = zeros( s , 3  ) ;
for i = 1 : s 
   output( i , class( i )  ) = 1 ;
end

%创建神经网络
net = newff( minmax(input) , [10 3] , { 'logsig' 'purelin' } , 'traingdx' ) ; 

%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 500 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

%开始训练
net = train( net, input , output' ) ; %这里的input矩阵的行表示特征的维度,列代表一个样本;output'每一列表示一个样本的标签。

%读取测试数据
[t1 t2 t3 t4 c] = textread('testData.txt' , '%f%f%f%f%f',150);

%测试数据归一化
testInput = tramnmx ( [t1,t2,t3,t4]' , minI, maxI ) ;

%仿真
Y = sim( net , testInput ) 

%统计识别正确率
[s1 , s2] = size( Y ) ;
hitNum = 0 ;
for i = 1 : s2
    [m , Index] = max( Y( : ,  i ) ) ;
    if( Index  == c(i)   ) 
        hitNum = hitNum + 1 ; 
    end
end
sprintf('识别率是 %3.3f%%',100 * hitNum / s2 )

步骤:

1、数据预处理——归一化 

       在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。

(1) 什么是归一化? 

数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

(2) 为什么要归一化处理? 

<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。

(3) 归一化算法 

  一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式:

       <1>

y = ( x - min )/( max - min )

  其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。

       <2>

y = 2 * ( x - min ) / ( max - min ) - 1

       这条公式将数据归一化到 [ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。

(4) Matlab数据归一化处理函数 

  Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。

<1> premnmx

语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)

参数:

pn: p矩阵按行归一化后的矩阵

minp,maxp:p矩阵每一行的最小值,最大值

tn:t矩阵按行归一化后的矩阵

mint,maxt:t矩阵每一行的最小值,最大值

作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。

<2> tramnmx

语法:[pn] = tramnmx(p,minp,maxp)

参数:

minp,maxp:premnmx函数计算的矩阵的最小,最大值

pn:归一化后的矩阵

作用:主要用于归一化处理待分类的输入数据。

<3> postmnmx

语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)

参数:

minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值

mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值

作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。

2、 

2. 使用Matlab实现神经网络 

使用Matlab建立前馈神经网络主要会使用到下面3个函数:

newff :前馈网络创建函数

train:训练一个神经网络

sim :使用网络进行仿真

 下面简要介绍这3个函数的用法。

(1) newff函数

<1>newff函数语法 

       newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。

语法:net = newff ( A, B, {C} ,‘trainFun’)

参数:

A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;

B:一个k维行向量,其元素为网络中各层节点数;

C:一个k维字符串行向量,每一分量为对应层神经元的激活函数

trainFun :为学习规则采用的训练算法

<2>常用的激活函数

a) 线性函数 (Linear transfer function)

                                                                 

  该函数的字符串为’purelin’。

 b) 对数S形转移函数( Logarithmic sigmoid transfer function )

                                              

    该函数的字符串为’logsig’。

c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )

                                                

  也就是上面所提到的双极S形函数。 

  该函数的字符串为’ tansig’。

  Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。

<3>常见的训练函数

    常见的训练函数有:

traingd :梯度下降BP训练函数(Gradient descent backpropagation)

traingdx :梯度下降自适应学习率训练函数

<4>网络配置参数

一些重要的网络配置参数如下:

net.trainparam.goal  :神经网络训练的目标误差

net.trainparam.show   : 显示中间结果的周期

net.trainparam.epochs  :最大迭代次数

net.trainParam.lr    : 学习率

(2) train函数

    网络训练学习函数。

语法:[ net, tr, Y1, E ]  = train( net, X, Y )

参数:

X:网络实际输入

Y:网络应有输出

tr:训练跟踪信息

Y1:网络实际输出

E:误差矩阵

(3) sim函数

语法:Y=sim(net,X)

参数:

net:网络

X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数

Y:输出矩阵Q×N,其中Q为网络输出个数

 

二、拟合

例子:拟合曲线  

程序:

function BPalg()
clear;
%X=-4*pi:0.05:4*pi;
X=1:100;
Y=[];
Y_test=[];
P=length(X);
for i=1:P
    Y(i)=1/X(i)^0.5
    %Y(i)=(sin(X(i))/X(i))^2;
    %Y(i)=exp(-X(i)^2)*sin(X(i)^2);
end
scatter(X,Y,10,'b');
grid on;
hold on;
net=newff(minmax(X),[14,1],{'logsig'  'purelin'},'traingdx'); %一个隐藏层,含有神经元14个
net.trainparam.epochs = 1000;
net.trainparam.goal = 0.0001 ;
net.trainParam.lr = 0.001 ;
net = train(net,X,Y);
for i=1:P
    Y_test(i) = sim(net,X(i));
end
plot(X,Y_test,'r'); 
hold off;

 

这里不需对数据归一化;

  

 

转载于:https://www.cnblogs.com/gaosheng12138/p/7857819.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/174565
推荐阅读
相关标签
  

闽ICP备14008679号