当前位置:   article > 正文

神经网络的三种训练方法,神经网络训练全过程

神经网络训练

matlab神经网络问题。 10

参考一下吧P=[012345678910];T=[01234321234];net=newff([010],[51],{'tansig''purelin'});=50;%每次循环50次net.trainParam.epochs=500;%最大循环500次=0.01;%期望目标误差最小值net=train(net,P,T);%对网络进行反复训练Y=sim(net,P)Figure%打开另外一个图形窗口plot(P,T,P,Y,'o')。

如何训练神经网络

1、先别着急写代码训练神经网络前,别管代码,先从预处理数据集开始AI爱发猫。我们先花几个小时的时间,了解数据的分布并找出其中的规律。

Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。

由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。

一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。

2、设置端到端的训练评估框架处理完数据集,接下来就能开始训练模型了吗?并不能!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/219142
推荐阅读
相关标签
  

闽ICP备14008679号