赞
踩
最近学了一下tensorflow的基本用法,这里做一下总结
全连接深度神经网络,每一层的神经元直接都是全连接,并且不共享权值。在普通的分类的问题中表现的不错,但是对于图片处理等具有网格形式的数据,最好采用CNN(卷积神经网络),对于序列化数据如NLP(自然语言处理)、文字分析等采用RNN(循环神经网络)表现更佳。
DNN用tensorflow的实现代码如下。
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np # 数据分析 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) LOG_DIR = "logs" IMAGE_NUM = 10 # 每个批次大小 batch_size = 100 n_batch = mnist.train.num_examples // batch_size print(n_batch) # 定义两个placeholder x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) dropout = tf.placeholder(tf.float32) learning_rate = tf.Variable(1e-3) hidden_num = 20 # 输入到隐藏层 w_hidden = tf.Variable(tf.truncated_normal([784, hidden_num], stddev=0.2)) b_hidden = tf.Variable(tf.zeros([hidden_num]) + 0.1) o_hidden = tf.nn.sigmoid(tf.matmul(x, w_hidden) + b_hidden) h_dropout = tf.nn.dropout(o_hidden, dropout) # # 隐藏层到输出层的权重 w = tf.Variable(tf.truncated_normal([hidden_num, 10], stddev=0.1)) b = tf.Variable(tf.zeros([10])+0.1) o = tf.matmul(h_dropout, w) + b prediction = o # 定义代价函数 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=prediction)) # 使用梯度下降法 train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss) correct_predict = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) accuracy = tf.reduce_mean(tf.cast(correct_predict, tf.float32)) with tf.Session() as sess: #writer = tf.summary.FileWriter('logs/', sess.graph) sess.run(tf.global_variables_initializer()) for epoch in range(n_batch): sess.run(tf.assign(learning_rate, (learning_rate * 0.95)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。