当前位置:   article > 正文

【OpenCV实现图像:用OpenCV图像处理技巧之白平衡算法】_opencv 白平衡

opencv 白平衡

概要

白平衡技术在摄影和图像处理中扮演着至关重要的角色。在不同的光照条件下,相机可能无法准确地捕捉到物体的真实颜色,导致图像呈现出暗淡、色调不自然或者褪色的效果。为了解决这个问题,我们需要了解和应用白平衡技术。

白平衡的重要性

在日常生活中,我们经常会遇到不同光源下拍摄的照片,比如在室内使用白炽灯、荧光灯,或者在室外阳光下拍摄。不同类型的光源会产生不同色温的光线,而相机可能无法自动适应这些光线的差异。这就导致了照片中的颜色看起来不真实,不符合我们的视觉感受。

白平衡的原理

白平衡技术的基本原理是通过调整图像中各个颜色通道的增益,使得图像中的灰度区域呈现出中性灰色。简单来说,就是让白色看起来像白色,黑色看起来像黑色。这样一来,不同光源下拍摄的图像就能更准确地还原物体的真实颜色。

白平衡的调整方法

预设白平衡模式: 相机通常提供了一些预设的白平衡模式,比如日光、阴天、荧光灯、白炽灯等。选择合适的预设模式可以在一定程度上改善图像的颜色偏差。

手动白平衡: 在一些相机中,我们可以手动设置白平衡。这通常需要在拍摄场景中放置一个白色卡片,让相机通过这个参考物体来调整白平衡。

后期处理: 在图像处理软件中,我们也可以进行白平衡的调整。通过调整图像的色温、色调和饱和度等参数,我们可以更精细地控制图像的颜色效果。
  • 1
  • 2
  • 3
  • 4
  • 5

白平衡技术的应用

白平衡技术不仅在摄影中应用广泛,在图像处理、广告设计、艺术创作等领域也有重要作用。在商品拍摄、人像摄影、风景摄影等各种场景中,合适的白平衡调整能够提高照片的质量,使其更具吸引力和真实感。

白平衡是一项用于校正由不同照明条件引起的图像颜色偏差的技术。它通过调整图像的颜色对比度,使白色看起来像白色,使黑色看起来像黑色。这个过程非常重要,因为它确保了图像中的颜色是准确的,同时也使图像对人眼来说看起来更加自然。

加载样例图像

# 导入必要的Python库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skimage import io, img_as_ubyte
from skimage.io import imread, imshow
from matplotlib.patches import Rectangle

# 加载样例图像
from skimage import io
import matplotlib.pyplot as plt

# 读取图像文件
image = io.imread(r'E:\yolo项目\Opencv-project-main\Opencv-project-main\CVZone\img.png')

# 显示原始图像
plt.figure(figsize=(10,10))
plt.title('Original Image')  # 设置图像标题
plt.imshow(image)  # 显示图像
plt.show()  # 显示图像

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

结果:
在这里插入图片描述

统计数据分析

# 导入必要的Python库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skimage import io, img_as_ubyte
from skimage.io import imread, imshow
from matplotlib.patches import Rectangle

# 加载样例图像
from skimage import io
import matplotlib.pyplot as plt

# 读取图像文件
image = io.imread('qmark.png')

# 显示原始图像
plt.figure(figsize=(10,10))
plt.title('Original Image')  # 设置图像标题
plt.imshow(image)  # 显示图像
plt.show()  # 显示图像

# 分析图像中的统计信息
def calc_color_overcast(image):
    # 计算每个通道的颜色偏差
    red_channel = image[:, :, 0]  # 红色通道
    green_channel = image[:, :, 1]  # 绿色通道
    blue_channel = image[:, :, 2]  # 蓝色通道

    # 创建一个DataFrame来存储结果
    channel_stats = pd.DataFrame(columns=['Mean', 'Std', 'Min', 'Median', 'P_80', 'P_90', 'P_99', 'Max'])

    # 计算并存储每个颜色通道的统计信息
    for channel, name in zip([red_channel, green_channel, blue_channel], ['Red', 'Green', 'Blue']):
        mean = np.mean(channel)  # 平均值
        std = np.std(channel)  # 标准差
        minimum = np.min(channel)  # 最小值
        median = np.median(channel)  # 中位数
        p_80 = np.percentile(channel, 80)  # 80th百分位数
        p_90 = np.percentile(channel, 90)  # 90th百分位数
        p_99 = np.percentile(channel, 99)  # 99th百分位数
        maximum = np.max(channel)  # 最大值

        # 将统计信息存储到DataFrame中
        channel_stats.loc[name] = [mean, std, minimum, median, p_80, p_90, p_99, maximum]

    return channel_stats
# 计算颜色通道的统计信息
channel_stats = calc_color_overcast(image)

# 打印统计信息
print(channel_stats)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51

定义了一个函数 calc_color_overcast(image),该函数用于计算图像中每个颜色通道(红色、绿色、蓝色)的统计信息,包括均值、标准差、最小值、中位数、80th、90th、99th 百分位数以及最大值。这些信息对于分析图像的颜色特性非常有用。

结果:
在这里插入图片描述

White Patch Algorithm

白色补丁算法是图像处理中常用的一种颜色平衡方法。其目标是通过缩放图像的颜色通道,使得每个通道中最亮的像素变为白色。这一方法基于假设:图像中最亮的像素应当代表白色。通过调整每个通道的亮度,算法可以校正图像的颜色投射,实现图像的白平衡。

# 导入必要的Python库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skimage import io, img_as_ubyte
from skimage.io import imread, imshow
from matplotlib.patches import Rectangle

# 加载样例图像
from skimage import io
import matplotlib.pyplot as plt

# 读取图像文件




def white_patch(image, percentile=100):
    """
    Returns a plot comparison of original and corrected/white balanced image
    using the White Patch algorithm.

    Parameters
    ----------
    image : numpy array
            Image to process using white patch algorithm
    percentile : integer, optional
                  Percentile value to consider as channel maximum
    """
    white_patch_image = img_as_ubyte(
        (image * 1.0 / np.percentile(image,
                                     percentile,
                                     axis=(0, 1))).clip(0, 1))
    # Plot the comparison between the original and white patch corrected images
    fig, ax = plt.subplots(1, 2, figsize=(10, 10))
    ax[0].imshow(image)
    ax[0].set_title('Original Image')
    ax[0].axis('off')

    ax[1].imshow(white_patch_image, cmap='gray')
    ax[1].set_title('White Patch Corrected Image')
    ax[1].axis('off')

    plt.show()

# Read the input image
image = imread(r'E:\yolo项目\Opencv-project-main\Opencv-project-main\CVZone\img.png')

# Call the function to implement white patch algorithm
white_patch(image, 100)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

在这里插入图片描述
使用默认参数percentile=100并没有明显改善图像,因为图像中RGB通道的最大值已经是[255, 255, 255]。通过观察前一章节中的统计信息,我们可以看到RGB通道的最大值和99百分位数都是255。

为了解决这个问题,我们可以考虑将像素值的较低百分位数视为最大值,而不是绝对的最大值。

white_patch(image, 85)

  • 1
  • 2

结果:
在这里插入图片描述

小结

优点:

简单易用:白色补丁算法的实现相对简单,易于理解和操作。这使得它成为修复图像白平衡问题的一种便捷选择,尤其是对于那些不需要复杂操作的场景。

针对特定场景有效:该算法在处理具有主要白色区域或中性灰色区域的图像时非常有效。特别是当图像中存在明显的明亮区域时,白色补丁算法可以显著地改善图像的色彩平衡问题,使图像更加清晰和自然。

适用性广泛:白色补丁算法可以广泛应用于各种场景,包括摄影、图像处理等领域。它不仅适用于专业摄影师,也可以被普通用户用于简单的图像修复工作。
  • 1
  • 2
  • 3
  • 4
  • 5

缺点:

假设限制:算法的核心假设是图像中最亮的颜色是白色,然而,在实际场景中,图像中的最亮颜色可能是其他颜色。当这一假设不成立时,白色补丁算法的效果可能受到限制,无法完全修复图像的白平衡问题。

过度校正风险:如果算法的假设不成立,可能会导致过度校正,使图像出现不自然的颜色或伪影。过度校正可能会引入新的问题,影响图像的质量和真实性。

颜色偏移和伪影:由于算法的基本假设,即图像中最亮的区域是白色,可能会导致图像的某些区域出现颜色偏移或伪影。这种现象可能在图像的边缘或高光区域更为明显,影响整体视觉效果。在一些特殊场景下,这种颜色偏移和伪影可能会对图像的真实性产生负面影响。
  • 1
  • 2
  • 3
  • 4
  • 5

在使用白色补丁算法时,用户需要根据具体情况权衡其优点和缺点,确保选择合适的场景和图像以获得最佳的修复效果。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/287515
推荐阅读
相关标签
  

闽ICP备14008679号