当前位置:   article > 正文

【tensorflow-keras-GRU】keras.layers.GRU 门限循环单元网络(Gated Recurrent Unit)_gru参数return_sequences

gru参数return_sequences

循环层 Recurrent - Keras 中文文档 https://keras.io/zh/layers/recurrent/#gru

GRU

keras.layers.GRU(units, activation='tanh', recurrent_activation='hard_sigmoid', 
use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal',
 bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, 
 bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, 
 recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, 
 implementation=1, return_sequences=False, return_state=False, go_backwards=False, 
 stateful=False, unroll=False, reset_after=False)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

门限循环单元网络(Gated Recurrent Unit) - Cho et al. 2014.

有两种变体。默认的是基于 1406.1078v3 的实现,同时在矩阵乘法之前将复位门应用于隐藏状态。 另一种则是基于 1406.1078v1 的实现,它包括顺序倒置的操作。

第二种变体与 CuDNNGRU(GPU-only) 兼容并且允许在 CPU 上进行推理。 因此它对于 kernel 和 recurrent_kernel 有可分离偏置。 使用 'reset_after'=Truerecurrent_activation='sigmoid'

参数

  • units: 正整数,输出空间的维度
  • activation: 要使用的激活函数 (详见 activations)。 默认:双曲正切 (tanh)。 如果传入
    None,则不使用激活函数 (即 线性激活:a(x) = x)。
  • recurrent_activation: 用于循环时间步的激活函数 (详见 activations)。 默认:分段线性近似
    sigmoid (hard_sigmoid)。 如果传入 None,则不使用激活函数 (即 线性激活:a(x) = x)。
  • use_bias: 布尔值,该层是否使用偏置向量。
  • kernel_initializer: kernel 权值矩阵的初始化器, 用于输入的线性转换 (详见 initializers)。
  • recurrent_initializer: recurrent_kernel 权值矩阵 的初始化器,用于循环层状态的线性转换 (详见initializers)。
  • bias_initializer:偏置向量的初始化器 (详见initializers).
  • kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数 (详见 regularizer)。
  • recurrent_regularizer: 运用到 recurrent_kernel 权值矩阵的正则化函数 (详见
    regularizer)。
  • bias_regularizer: 运用到偏置向量的正则化函数 (详见 regularizer)。
  • activity_regularizer: 运用到层输出(它的激活值)的正则化函数 (详见 regularizer)。
  • kernel_constraint: 运用到 kernel 权值矩阵的约束函数 (详见 constraints)。
  • recurrent_constraint: 运用到 recurrent_kernel 权值矩阵的约束函数 (详见
    constraints)。
  • bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)。
  • dropout: 在 0 和 1 之间的浮点数。 单元的丢弃比例,用于输入的线性转换。
  • recurrent_dropout: 在 0 和 1 之间的浮点数。 单元的丢弃比例,用于循环层状态的线性转换。
  • implementation: 实现模式,1 或 2。 模式 1 将把它的操作结构化为更多的小的点积和加法操作, 而模式 2将把它们分批到更少,更大的操作中。 这些模式在不同的硬件和不同的应用中具有不同的性能配置文件。
  • return_sequences: 布尔值。是返回输出序列中的最后一个输出,还是全部序列。
  • return_state: 布尔值。除了输出之外是否返回最后一个状态。
  • go_backwards: 布尔值 (默认 False)。 如果为 True,则向后处理输入序列并返回相反的序列。
  • stateful: 布尔值 (默认 False)。 如果为 True,则批次中索引 i 处的每个样品的最后状态 将用作下一批次中索引 i样品的初始状态。
  • unroll: 布尔值 (默认 False)。 如果为 True,则网络将展开,否则将使用符号循环。 展开可以加速 RNN,但它往往会占用更多的内存。 展开只适用于短序列。
  • reset_after:
  • GRU 公约 (是否在矩阵乘法之前或者之后使用重置门)。 False =「之前」(默认),Ture =「之后」( CuDNN 兼容)。
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/347767
推荐阅读
相关标签
  

闽ICP备14008679号