当前位置:   article > 正文

【托马斯微积分】(12版)阅读笔记1:函数_a simple example of a rational function is the fun

a simple example of a rational function is the function f sxd 1yx, whos

一.words

d o m a i n domain domain 定义域   n a t u r a l natural natural d o m a i n domain domain 自然定义域
r a n g e range range 值域   v a r i a b l e variable variable q u a n t i t y quantity quantity 变量
i n d e p e n d e n t independent independent v a r i a b l e variable variable 自变量   d e p e n d e n t dependent dependent v a r i a b l e variable variable 因变量
f o r m u l a formula formula 公式   r a d i u s radius radius 半径
s t a t e state state 规定   p o s i t i v e positive positive 正
n e g a t i v e negative negative 负   n o n n e g a t i v e nonnegative nonnegative 非负
n o n p o s i t i v e nonpositive nonpositive 非正   r e a l v a l u e d realvalued realvalued f u n c t i o n function function 实值函数
i n t e r v a l interval interval 区间   o p e n open open i n t e r v a l interval interval 开区间
c l o s e d closed closed i n t e r v a l interval interval 闭区间   h a l f half half o p e n open open i n t e r v a l interval interval 半开半闭区间
a r r o w arrow arrow d i a g r a m diagram diagram 矢量图   v e r i f y verify verify 检验
s q u a r e square square 平方   s q u a r e square square r o o t root root 平方根
a r i t h m e t i c arithmetic arithmetic 算术,算法   r e c i p r o c a l s reciprocals reciprocals 倒数
C a r t e s i a n Cartesian Cartesian p l a n e plane plane 笛卡尔平面(平面直角坐标系)   c o o r d i n a t e s coordinates coordinates 坐标
s c a t t e r p l o t scatterplot scatterplot 散点图   T h e The The V e r t i c a l Vertical Vertical L i n e Line Line T e s t Test Test f o r for for a a a F u n c t i o n Function Function 函数的垂直性检验
P i e c e w i s e − D e f i n e d Piecewise-Defined PiecewiseDefined F u n c t i o n Function Function 分段倒数   a b s o l u t e absolute absolute v a l u e value value 绝对值
i n c r e a s i n g increasing increasing f u n c t i o n function function 增函数   d e c r e a s i n g decreasing decreasing f u n c t i o n function function 减函数
e v e n even even f u n c t i o n function function 偶函数   o d d odd odd f u n c t i o n function function 奇函数
s y m m e t r y symmetry symmetry  对称性   s y m m e t r i c symmetric symmetric  对称的
a x i s axis axis  轴   l i n e a r linear linear f u n c t i o n function function 一次函数
i d e n t i t y identity identity f u n c t i o n function function 恒等函数   c o s t a n t costant costant f u n c t i o n function function常数函数
p o w e r power power f u n c t i o n function function幂函数   r a t i o n a l rational rational f u n c t i o n function function 有理函数
a l g e b r a i c algebraic algebraic f u n c t i o n function function 代数函数   t r i g o n o m e t r i c trigonometric trigonometric f u n c t i o n function function 三角函数
e x p o n e n t i a l exponential exponential f u n c t i o n function function 指数函数   l o g a r i t h m i c logarithmic logarithmic f u n c t i o n function function 对数函数
i n v e r s e inverse inverse f u n c t i o n function function 反函数   t r a n s c e n d e n t a l transcendental transcendental f u n c t i o n function function 超越函数
h y p e r b o l a hyperbola hyperbola 双曲线   s l o p e slope slope 斜率
o r i g i n origin origin 原点   p r o p o r t i o n a l proportional proportional 成比例
m u l t i p l e multiple multiple 倍数

二 .

1.Functions; Domain and Range

   y = f ( x ) y=f(x) y=f(x)              (“y equals f of x”)
  A function ƒ from a set D to a set Y is a rule that assigns a unique (single) element f ( x ) ∈ Y f(x)\in Y f(x)Y to each element x ∈ D x \in D xD.
  Notice that a function can have the same value at two different input elements in the domain, but each input element x is assigned a single output value ƒ(x).

2.Graphs of Functions

  If ƒ is a function with domain D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for ƒ. In set notation, the graph is { ( x , f ( x ) ) ∣ x ∈ D } \{(x,f(x))|x\in D\} {(x,f(x))xD}

3.Representing a Function Numerically

  The graph consisting of only the points in the table is called a scatterplot.

4.The Vertical Line Test for a Function

  A function ƒ can have only one value for each x in its domain, so no verticalline can intersect the graph of a function more than once. If a is in the domain of the function ƒ, then the vertical line x = a x=a x=a will intersect the graph of ƒ at the single point ( a , f ( a ) ) (a,f(a)) (a,f(a)) .

5.Piecewise-Defined Functions

  Sometimes a function is described by using different formulas on different parts of its domain. One example is the absolute value function
  The function whose value at any number x is the greatest integer less than or equal to x is called the greatest integer function or the integer floor function. It is denoted ⌊ x ⌋ ⌊x⌋ x .
  The function whose value at any number x is the smallest integer greater than or equal to x is called the least integer function or the integer ceiling function. It is denoted ⌈ x ⌉ ⌈x⌉ x .

6.Increasing and Decreasing Functions

7.Even Functions and Odd Functions: Symmetry

8.Common Functions

8.1 Linear Functions

  A function of the form ƒ ( x ) = m x + b ƒ(x)=mx+b ƒ(x)=mx+b, for constants m and b, is
called a linear function.
  The function ƒ ( x ) = x ƒ(x)=x ƒ(x)=x where m = 1 m = 1 m=1 and b = 0 b = 0 b=0 is called the identity function.
  Constant functions result when the slope m = 0
  A linear function with positive slope whose graph passes through the origin is called a proportionality relationship.

Two variables y and x are proportional (to one another) if one is always a constant multiple of the other; that is, if y = k x y = kx y=kx for some nonzero constant k.

  If the variable y is proportional to the reciprocal 1 / x 1/x 1/x, then sometimes it is said that y is inversely proportional to x (because 1 / x 1/x 1/x is the multiplicative inverse of x).

8.2 Power Functions

A function f ( x ) = x a f(x)=x^a f(x)=xawhere a is a constant, is called a power function.

8.3 Polynomials

  A function p is a polynomial if p ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 p(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0 p(x)=anxn+an1xn1+...+a1x+a0  where n is a nonnegative integer and the numbers a 0 , a 1 , a 2 . . . a n − 1 , a n a_0,a_1,a_2...a_{n-1},a_n a0,a1,a2...an1,anare real constants(called the coefficients of the polynomial). If the leading coefficient an a n ! = 0 a_n!=0 an!=0 and n > 0 n>0 n>0, then n is called the degree of the polynomial.

8.4 Rational Functions

  A rational function is a quotient or ratio ƒ ( x ) = p ( x ) / q ( x ) ƒ(x) = p(x)/q(x) ƒ(x)=p(x)/q(x), where p and q are polynomials. The domain of a rational function is the set of all real x for which q ( x ) ! = 0 q(x)!=0 q(x)!=0

8.5 Algebraic Functions

  Any function constructed from polynomials using algebraic operations (addition, subtraction, multiplication, division, and taking roots) lies within the class of algebraic functions. All rational functions are algebraic, but also included are more complicated functions.

8.6 Trigonometric Functions
8.7 Exponential Functions

  Functions of the form f ( x ) = a x f(x)=a^x f(x)=ax , where the base a > 0 a > 0 a>0 is a positive constant and a ! = 0 a!=0 a!=0 have domain are called exponential functions.

8.8 Logarithmic Functions

  These are the functions ƒ ( x ) = l o g a x ƒ(x) = log_a^x ƒ(x)=logax, where the base a ! = 1 a!=1 a!=1 is a positive constant. They are the inverse functions of the exponential functions

8.9 Transcendental Functions

  These are functions that are not algebraic. They include the trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many
other functions as well. A particular example of a transcendental function is a catenary.

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/403212
推荐阅读
相关标签
  

闽ICP备14008679号