赞
踩
- # setting loggers
- logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s',
- datefmt='%a, %d %b %Y %H:%M:%S', filename=args.progress_log_path, filemode='w')
插入log信息,format数据格式,datafmt时间格式
- # setting placeholders
- is_training = tf.placeholder(tf.bool, name="phase_train")
- handle_flag = tf.placeholder(tf.string, [], name='iterator_handle_flag')
- # register the gpu nms operation here for the following evaluation scheme
- pred_boxes_flag = tf.placeholder(tf.float32, [1, None, None])
- pred_scores_flag = tf.placeholder(tf.float32, [1, None, None])
- gpu_nms_op = gpu_nms(pred_boxes_flag, pred_scores_flag, args.class_num, args.nms_topk, args.score_threshold, args.nms_threshold)
所以placeholder()函数是在神经网络构建graph的时候在模型中的占位,此时并没有把要输入的数据传入模型,它只会分配必要的内存。等建立session,在会话中,运行模型的时候通过feed_dict()函数向占位符喂入数据。
gpu_nms_op() 实现gpu评估函数
- ##################
- # tf.data pipeline
- ##################
- train_dataset = tf.data.TextLineDataset(args.train_file)#指定路径
- train_dataset = train_dataset.shuffle(args.train_img_cnt)#打乱
- train_dataset = train_dataset.batch(args.batch_size)#取batch
- train_dataset = train_dataset.map(
- lambda x: tf.py_func(get_batch_data,
- inp=[x, args.class_num, args.img_size, args.anchors, 'train', args.multi_scale_train, args.use_mix_up, args.letterbox_resize],
- Tout=[tf.int64, tf.float32, tf.float32, tf.float32, tf.float32]),
- num_parallel_calls=args.num_threads
- )#转化数据
- train_dataset = train_dataset.prefetch(args.prefetech_buffer)#设置预取
-
- val_dataset = tf.data.TextLineDataset(args.val_file)
- val_dataset = val_dataset.batch(1)
- val_dataset = val_dataset.map(
- lambda x: tf.py_func(get_batch_data,
- inp=[x, args.class_num, args.img_size, args.anchors, 'val', False, False, args.letterbox_resize],
- Tout=[tf.int64, tf.float32, tf.float32, tf.float32, tf.float32]),
- num_parallel_calls=args.num_threads
- )
- val_dataset.prefetch(args.prefetech_buffer)
-
- iterator = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes)
- train_init_op = iterator.make_initializer(train_dataset)
- val_init_op = iterator.make_initializer(val_dataset)#创建迭代器
get_batch_data()
- def process_box(boxes, labels, img_size, class_num, anchors):
- '''
- Generate the y_true label, i.e. the ground truth feature_maps in 3 different scales.
- params:
- boxes: [N, 5] shape, float32 dtype. `x_min, y_min, x_max, y_mix, mixup_weight`.
- labels: [N] shape, int64 dtype.
- class_num: int64 num.
- anchors: [9, 4] shape, float32 dtype.
- '''
- anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
-
- # convert boxes form:
- # shape: [N, 2]
- # (x_center, y_center)
- box_centers = (boxes[:, 0:2] + boxes[:, 2:4]) / 2
- # (width, height)
- box_sizes = boxes[:, 2:4] - boxes[:, 0:2]
-
- # [13, 13, 3, 5+num_class+1] `5` means coords and labels. `1` means mix up weight.
- y_true_13 = np.zeros((img_size[1] // 32, img_size[0] // 32, 3, 6 + class_num), np.float32)
- y_true_26 = np.zeros((img_size[1] // 16, img_size[0] // 16, 3, 6 + class_num), np.float32)
- y_true_52 = np.zeros((img_size[1] // 8, img_size[0] // 8, 3, 6 + class_num), np.float32)
-
- # mix up weight default to 1.
- y_true_13[..., -1] = 1.
- y_true_26[..., -1] = 1.
- y_true_52[..., -1] = 1.
-
- y_true = [y_true_13, y_true_26, y_true_52]
-
- # [N, 1, 2]
- box_sizes = np.expand_dims(box_sizes, 1)
- # broadcast tricks
- # [N, 1, 2] & [9, 2] ==> [N, 9, 2]
- mins = np.maximum(- box_sizes / 2, - anchors / 2)
- maxs = np.minimum(box_sizes / 2, anchors / 2)
- # [N, 9, 2]
- whs = maxs - mins
-
- # [N, 9]
- iou = (whs[:, :, 0] * whs[:, :, 1]) / (
- box_sizes[:, :, 0] * box_sizes[:, :, 1] + anchors[:, 0] * anchors[:, 1] - whs[:, :, 0] * whs[:, :,
- 1] + 1e-10)
- # [N]
- best_match_idx = np.argmax(iou, axis=1)
-
- ratio_dict = {1.: 8., 2.: 16., 3.: 32.}
- for i, idx in enumerate(best_match_idx):
- # idx: 0,1,2 ==> 2; 3,4,5 ==> 1; 6,7,8 ==> 0
- feature_map_group = 2 - idx // 3
- # scale ratio: 0,1,2 ==> 8; 3,4,5 ==> 16; 6,7,8 ==> 32
- ratio = ratio_dict[np.ceil((idx + 1) / 3.)]
- x = int(np.floor(box_centers[i, 0] / ratio))
- y = int(np.floor(box_centers[i, 1] / ratio))
- k = anchors_mask[feature_map_group].index(idx)
- c = labels[i]
- # print(feature_map_group, '|', y,x,k,c)
-
- y_true[feature_map_group][y, x, k, :2] = box_centers[i]
- y_true[feature_map_group][y, x, k, 2:4] = box_sizes[i]
- y_true[feature_map_group][y, x, k, 4] = 1.
- y_true[feature_map_group][y, x, k, 5 + c] = 1.
- y_true[feature_map_group][y, x, k, -1] = boxes[i, -1]
-
- return y_true_13, y_true_26, y_true_52
np.expand_dims:用于扩展数组的形状
- # get an element from the chosen dataset iterator
- image_ids, image, y_true_13, y_true_26, y_true_52 = iterator.get_next()
- y_true = [y_true_13, y_true_26, y_true_52]
-
- # tf.data pipeline will lose the data `static` shape, so we need to set it manually
- image_ids.set_shape([None])
- image.set_shape([None, None, None, 4])
- for y in y_true:
- y.set_shape([None, None, None, None, None])
设定dataset输出的变量维度
- ##################
- # Model definition
- ##################
- yolo_model = yolov3(args.class_num, args.anchors, args.use_label_smooth, args.use_focal_loss, args.batch_norm_decay, args.weight_decay, use_static_shape=False)
- with tf.variable_scope('yolov3'):
- pred_feature_maps = yolo_model.forward(image, is_training=is_training)
- loss = yolo_model.compute_loss(pred_feature_maps, y_true)
- y_pred = yolo_model.predict(pred_feature_maps)
-
- l2_loss = tf.losses.get_regularization_loss()#获得L2正则化损失
-
- # setting restore parts and vars to update
- saver_to_restore = tf.train.Saver(var_list=tf.contrib.framework.get_variables_to_restore(include=args.restore_include, exclude=args.restore_exclude))
- update_vars = tf.contrib.framework.get_variables_to_restore(include=args.update_part)
-
- #tensorboard画图使用
- tf.summary.scalar('train_batch_statistics/total_loss', loss[0])
- tf.summary.scalar('train_batch_statistics/loss_xy', loss[1])
- tf.summary.scalar('train_batch_statistics/loss_wh', loss[2])
- tf.summary.scalar('train_batch_statistics/loss_conf', loss[3])
- tf.summary.scalar('train_batch_statistics/loss_class', loss[4])
- tf.summary.scalar('train_batch_statistics/loss_l2', l2_loss)
- tf.summary.scalar('train_batch_statistics/loss_ratio', l2_loss / loss[0])
-
- #设置学习率
- global_step = tf.Variable(float(args.global_step), trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES])
- if args.use_warm_up:
- learning_rate = tf.cond(tf.less(global_step, args.train_batch_num * args.warm_up_epoch),
- lambda: args.learning_rate_init * global_step / (args.train_batch_num * args.warm_up_epoch),
- lambda: config_learning_rate(args, global_step - args.train_batch_num * args.warm_up_epoch))
- else:
- learning_rate = config_learning_rate(args, global_step)
- tf.summary.scalar('learning_rate', learning_rate)
-
- #创建saver类
- if not args.save_optimizer:
- saver_to_save = tf.train.Saver()
- saver_best = tf.train.Saver()
-
- optimizer = config_optimizer(args.optimizer_name, learning_rate)
-
- # set dependencies for BN ops
- #https://www.cnblogs.com/reaptomorrow-flydream/p/9492191.html
- #https://blog.csdn.net/NockinOnHeavensDoor/article/details/80632677
- update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
- with tf.control_dependencies(update_ops):
- # train_op = optimizer.minimize(loss[0] + l2_loss, var_list=update_vars, global_step=global_step)
- # apply gradient clip to avoid gradient exploding
- gvs = optimizer.compute_gradients(loss[0] + l2_loss, var_list=update_vars)
- clip_grad_var = [gv if gv[0] is None else [
- tf.clip_by_norm(gv[0], 100.), gv[1]] for gv in gvs]
- train_op = optimizer.apply_gradients(clip_grad_var, global_step=global_step)#在这里global_step+1
-
- #创建saver类
- if args.save_optimizer:
- print('Saving optimizer parameters to checkpoint! Remember to restore the global_step in the fine-tuning afterwards.')
- saver_to_save = tf.train.Saver()
- saver_best = tf.train.Saver()
update_ops
sess
- with tf.Session() as sess:
- sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
- #saver_to_restore.restore(sess, args.restore_path)
- merged = tf.summary.merge_all()
- writer = tf.summary.FileWriter(args.log_dir, sess.graph)
-
- print('\n----------- start to train -----------\n')
-
- best_mAP = -np.Inf
-
- for epoch in range(args.total_epoches):
-
- sess.run(train_init_op)
- loss_total, loss_xy, loss_wh, loss_conf, loss_class = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
-
- for i in trange(args.train_batch_num):
- _, summary, __y_pred, __y_true, __loss, __global_step, __lr = sess.run(
- [train_op, merged, y_pred, y_true, loss, global_step, learning_rate],
- feed_dict={is_training: True})
-
- writer.add_summary(summary, global_step=__global_step)
-
- loss_total.update(__loss[0], len(__y_pred[0]))
- loss_xy.update(__loss[1], len(__y_pred[0]))
- loss_wh.update(__loss[2], len(__y_pred[0]))
- loss_conf.update(__loss[3], len(__y_pred[0]))
- loss_class.update(__loss[4], len(__y_pred[0]))
-
- if __global_step % args.train_evaluation_step == 0 and __global_step > 0:
- # recall, precision = evaluate_on_cpu(__y_pred, __y_true, args.class_num, args.nms_topk, args.score_threshold, args.nms_threshold)
- recall, precision = evaluate_on_gpu(sess, gpu_nms_op, pred_boxes_flag, pred_scores_flag, __y_pred, __y_true, args.class_num, args.nms_threshold)
-
- info = "Epoch: {}, global_step: {} | loss: total: {:.2f}, xy: {:.2f}, wh: {:.2f}, conf: {:.2f}, class: {:.2f} | ".format(
- epoch, int(__global_step), loss_total.average, loss_xy.average, loss_wh.average, loss_conf.average, loss_class.average)
- info += 'Last batch: rec: {:.3f}, prec: {:.3f} | lr: {:.5g}'.format(recall, precision, __lr)
- print(info)
- logging.info(info)
-
- writer.add_summary(make_summary('evaluation/train_batch_recall', recall), global_step=__global_step)
- writer.add_summary(make_summary('evaluation/train_batch_precision', precision), global_step=__global_step)
-
- if np.isnan(loss_total.average):
- print('****' * 10)
- raise ArithmeticError(
- 'Gradient exploded! Please train again and you may need modify some parameters.')
-
- # NOTE: this is just demo. You can set the conditions when to save the weights.
- if epoch % args.save_epoch == 0 and epoch > 0:
- if loss_total.average <= 2.:
- saver_to_save.save(sess, args.save_dir + 'model-epoch_{}_step_{}_loss_{:.4f}_lr_{:.5g}'.format(epoch, int(__global_step), loss_total.average, __lr))
-
- # switch to validation dataset for evaluation
- if epoch % args.val_evaluation_epoch == 0 and epoch >= args.warm_up_epoch:
- sess.run(val_init_op)
-
- val_loss_total, val_loss_xy, val_loss_wh, val_loss_conf, val_loss_class = \
- AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
-
- val_preds = []
-
- for j in trange(args.val_img_cnt):
- __image_ids, __y_pred, __loss = sess.run([image_ids, y_pred, loss],
- feed_dict={is_training: False})
- pred_content = get_preds_gpu(sess, gpu_nms_op, pred_boxes_flag, pred_scores_flag, __image_ids, __y_pred)
- val_preds.extend(pred_content)
- val_loss_total.update(__loss[0])
- val_loss_xy.update(__loss[1])
- val_loss_wh.update(__loss[2])
- val_loss_conf.update(__loss[3])
- val_loss_class.update(__loss[4])
-
- # calc mAP
- rec_total, prec_total, ap_total = AverageMeter(), AverageMeter(), AverageMeter()
- gt_dict = parse_gt_rec(args.val_file, args.img_size, args.letterbox_resize)
-
- info = '======> Epoch: {}, global_step: {}, lr: {:.6g} <======\n'.format(epoch, __global_step, __lr)
-
- for ii in range(args.class_num):
- npos, nd, rec, prec, ap = voc_eval(gt_dict, val_preds, ii, iou_thres=args.eval_threshold, use_07_metric=args.use_voc_07_metric)
- info += 'EVAL: Class {}: Recall: {:.4f}, Precision: {:.4f}, AP: {:.4f}\n'.format(ii, rec, prec, ap)
- rec_total.update(rec, npos)
- prec_total.update(prec, nd)
- ap_total.update(ap, 1)
- writer.add_summary(make_summary('evaluation/val_mAP' + 'class' + str(ii), ap), global_step=epoch)
-
- mAP = ap_total.average
- info += 'EVAL: Recall: {:.4f}, Precison: {:.4f}, mAP: {:.4f}\n'.format(rec_total.average, prec_total.average, mAP)
- info += 'EVAL: loss: total: {:.2f}, xy: {:.2f}, wh: {:.2f}, conf: {:.2f}, class: {:.2f}\n'.format(
- val_loss_total.average, val_loss_xy.average, val_loss_wh.average, val_loss_conf.average, val_loss_class.average)
- print(info)
- logging.info(info)
-
- if mAP > best_mAP:
- best_mAP = mAP
- saver_best.save(sess, args.save_dir + 'best_model_Epoch_{}_step_{}_mAP_{:.4f}_loss_{:.4f}_lr_{:.7g}'.format(
- epoch, int(__global_step), best_mAP, val_loss_total.average, __lr))
-
- writer.add_summary(make_summary('evaluation/val_mAP', mAP), global_step=epoch)
- writer.add_summary(make_summary('evaluation/val_recall', rec_total.average), global_step=epoch)
- writer.add_summary(make_summary('evaluation/val_precision', prec_total.average), global_step=epoch)
- writer.add_summary(make_summary('validation_statistics/total_loss', val_loss_total.average), global_step=epoch)
- writer.add_summary(make_summary('validation_statistics/loss_xy', val_loss_xy.average), global_step=epoch)
- writer.add_summary(make_summary('validation_statistics/loss_wh', val_loss_wh.average), global_step=epoch)
- writer.add_summary(make_summary('validation_statistics/loss_conf', val_loss_conf.average), global_step=epoch)
- writer.add_summary(make_summary('validation_statistics/loss_class', val_loss_class.average), global_step=epoch)
evaluate_on_gpu
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。