赞
踩
随着国家一系列食品安全政策的出台,厨房的安全卫生问题逐渐被人们重视。其中,工作人员是否佩戴厨师帽是很关键的一环。人们希望能通过一种方式实现自动化的检测,但目前市场上大部分“明厨亮灶系统”或“未佩戴厨师帽检测系统”都无法满足用户的真实场景需求。在实际使用的时候会出现大量的误报、漏报等问题。那到底在未佩戴厨师帽行为识别算法上到底有什么难点?该如何解决呢?
目前,未佩戴厨师帽检测算法的核心问题为召回率与准确率不足,其难点主要分为以下两个方面。
难点一:厨房场景复杂、空间受限、人体目标容易被遮挡
受到厨房空间、摄像头安装角度、人员密集等条件影响,人体目标被部分或严重遮挡以及厨师人员低头造成厨师帽特征信息丢失,只有少部分数据或者无数据可供神经网络学习。由于遮挡数据的多样性与复杂性,模型只能学习到厨师帽的局部特征,容易造成过拟合,从而引发漏报或误报问题。
如上图所示,由于遮挡问题造成无法看到人体目标,只有局部厨师帽特征信息在画面中,导致影响特征网络的特征提取,从而造成漏报。
难点二:摄像头安装位置角度导致厨师帽目标过小
当厨房工作人员距离摄像头较远时,无法看清厨师帽的细粒度特征,造成误识别。下图中可以看到,佩戴厨师帽的人员,距离摄像头距离过远,且画面光线昏暗,造成无法精准做到厨师帽识别效果。
针对上面提到的难点,小编的优化方式是采用目标检测技术(Yolov5)+多目标追踪技术(bytetrack)。
一、YOLOv5输入端
Mosaic数据增强
Yolov5的输入端采用了和Yolov4一样的Mosaic数据增强的方式。Mosaic是参考2019年底提出的CutMix数据增强的方式,但CutMix只使用了两张图片进行拼接,而Mosaic数据增强则采用了4张图片,随机缩放、随机裁剪、随机排布的方式进行拼接,使模型在更小的范围内识别目标。。
Mosaic数据增强的主要步骤为:
采用Mosaic数据增强的优点:
自适应锚框计算的具体过程:
CSP结构:
以YOLOv5s网络为例,CSP1_ X结构应用于Backbone主干网络,而CSP2_X结构则应用于Neck中。下图清楚的表示出来了:
二、多目标追踪技术(bytetrack)
BYTE 数据关联方法具体的流程如下:
最后实现流程
首先通过目标检测厨房工作人员,实时检测人体目标以及厨师帽识别目标,并对人体目标采用跟踪技术,期间选取人体质量最优的人体目标进行行为判定。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。