当前位置:   article > 正文

Llama改进之——RoPE旋转位置编码_旋转自编码mn是什么

旋转自编码mn是什么

引言

旋转位置编码(Rotary Position Embedding, RoPE)将绝对相对位置依赖纳入自注意力机制中,以增强Transformer架构的性能。目前很火的大模型LLaMA、QWen等都应用了旋转位置编码。

之前在[论文笔记]ROFORMER中对旋转位置编码的原始论文进行了解析,重点推导了旋转位置编码的公式,本文侧重实现,同时尽量简化数学上的推理,详细推理可见最后的参考文章。

复数与极坐标

复数由两个部分组成:实部(real part)和虚部(imaginary part)。实部就是一个普通的数字,可以是零、正数或负数。虚部是另一个实数与 i i i相乘。比如 2 + 3 i 2+3i 2+3i是一个复数,其中 2 2 2是实部; 3 i 3i 3i是虚部。下面这些数字都是复数:
2 , 2 + 2 i , 1 − 3 i , − 4 i , 17 i 2, \quad 2+2i,\quad 1-3i,\quad -4i,\quad 17i 2,2+2i,13i,4i,17i

可以看到复数是实数的扩展,包含了实数,比如 2 2 2可以看成是虚部为 0 0 0

通常实数放前面,然后是 i i i。但当 i i i与三角函数( sin ⁡ , cos ⁡ \sin,\cos sin,cos)在一起通常把 i i i放在前面: i sin ⁡ θ , i cos ⁡ θ i \sin \theta, i\cos \theta isinθ,icosθ​​。

i i i我们可以理解为就是一个简单的数学对象,满足 i 2 = − 1 i^2=-1 i2=1

image-20240406094033599

极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点——极点的距离来表示。如上图(来自百度百科)所示。

给定极坐标系内的任意一个复数 x + y i x+yi x+yi(对应二维向量 [ x , y ] [x,y] [x,y]),要将其(逆时针)旋转 θ \theta θ度,只需要乘上旋转子:

R θ = cos ⁡ θ + i sin ⁡ θ ( sin ⁡ 2 θ + cos ⁡ 2 θ = 1 ) (1) \pmb R_\theta = \cos \theta + i \sin \theta \qquad(\sin^2 \theta + \cos^2 \theta = 1) \tag 1 Rθ=cosθ+isinθ(sin2θ+cos2θ=1)(1)

可以相乘再展开,然后利用 i 2 = − 1 i^2=-1 i2=1可得:
x ′ + y ′ i = ( cos ⁡ θ + i sin ⁡ θ ) ( x + y i ) = ( x cos ⁡ θ − y sin ⁡ θ ) + ( x sin ⁡ θ + y cos ⁡ θ ) i x+yi=(cosθ+isinθ)(x+yi)=(xcosθysinθ)+(xsinθ+ycosθ)i

x+yi=(cosθ+isinθ)(x+yi)=(xcosθysinθ)+(xsinθ+ycosθ)i

对应二维平面中点 [ x , y ] [x,y] [x,y]关于原点的逆时针旋转:
[ x ′ y ′ ] = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] [ x y ] [xy]

= [cosθsinθsinθcosθ]
[xy]
[xy]=[cosθsinθsinθcosθ][xy]

其中包含 θ \theta θ的矩阵是一个旋转矩阵。

旋转位置编码

x i ∈ R d \pmb x_i \in \Bbb R^d xiRd是无位置信息的标记 w i w_i wi d d d维词嵌入向量。自注意力首先将位置信息与单词嵌入相结合,并将其转化为query、key和value的表示形式。
q m = f q ( x m , m ) k n = f k ( x n , n ) v n = f v ( x n , n ) (2) qqm=fq(xxm,m)kkn=fk(xxn,n)vvn=fv(xxn,n)

\tag 2 qmknvn=fq(xm,m)=fk(xn,n)=fv(xn,n)(2)

其中 q m , k n \pmb q_m,\pmb k_n qm,kn v n \pmb v_n vn分别通过 f q , f k f_q,f_k fq,fk f v f_v fv整合了第m和第n个位置信息。query和key然后用于计算注意力权重,而输出为value的加权和。

a m , n = exp ⁡ ( q m T k n d ) ∑ j = 1 N exp ⁡ q m T k j d o m = ∑ n = 1 N a m , n v n (3) am,n=exp(qqTmkknd)Nj=1expqqTmkkjdoom=Nn=1am,nvvn

\tag 3 am,nom=j=1Nexpd qmTkjexp(d qmTkn)=n=1Nam,nvn(3)

Transformer通过自注意机制利用各个标记的位置信息,如等式(3)中所见, q m T k n \pmb q_m^T \pmb k_n qmTkn通常可以在不同位置的标记之间传递知识。为了融入相对位置信息,我们需要将查询 q m \pmb q_m qm和键 k n \pmb k_n kn的内积公式转化为一个函数 g g g,该函数只接受词嵌入 x m , x n \pmb x_m,\pmb x_n xm,xn以及它们的相对位置 m − n m-n mn​作为输入变量。换句话说,我们希望内积只以相对形式编码位置信息:

⟨ f q ( x m , m ) , f k ( x n , n ) ⟩ = g ( x m , x n , m − n ) (4) \langle f_q(\pmb x_m,m) , f_k(\pmb x_n,n) \rangle = g(\pmb x_m,\pmb x_n, m-n) \tag 4 fq(xm,m),fk(xn,n)⟩=g(xm,xn,mn)(4)
最终目标是找到一个等价的编码方式来求解函数 f q ( x m , m ) f_q(\pmb x_m, m) fq(xm,m) f k ( x n , n ) f_k(\pmb x_n, n) fk(xn,n)​,以符合上等式。

从简单的维度 d = 2 d=2 d=2的情况开始,这样可以利用二维平面上向量的几何特性及其复数形式来证明公式(4)的一个解是:
f q ( x m , m ) = ( W q x m ) e i m θ f k ( x n , n ) = ( W k x n ) e i n θ g ( x m , x n , m − n ) = Re [ ( W q x m ) ( W k x n ) ∗ e i ( m − n ) θ ] (5) fq(xxm,m)=(WWqxxm)eimθfk(xxn,n)=(WWkxxn)einθg(xxm,xxn,mn)=Re[(WWqxxm)(WWkxxn)ei(mn)θ]

\tag {5} fq(xm,m)fk(xn,n)g(xm,xn,mn)=(Wqxm)eimθ=(Wkxn)einθ=Re[(Wqxm)(Wkxn)ei(mn)θ](5)
这里 Re [ ⋅ ] \text{Re}[\cdot] Re[]表示复数的实部; ( W k x n ) ∗ (\pmb W_k\pmb x_n)^* (Wkxn)表示 ( W k x n ) (\pmb W_k\pmb x_n) (Wkxn)的共轭复数; θ ∈ R \theta \in \Bbb R θR表示一个非零常数。

可以进一步将 f { q , k } f_{\{q,k\}} f{q,k}写成矩阵乘法形式:
f { q , k } ( x m , m ) = ( cos ⁡ m θ − sin ⁡ m θ sin ⁡ m θ cos ⁡ m θ ) ( W { q , k } ( 11 ) W { q , k } ( 12 ) W { q , k } ( 21 ) W { q , k } ( 22 ) ) ( x m ( 1 ) x m ( 2 ) ) (6) f_{\{q,k\}} (\pmb x_m,m) =(cosmθsinmθsinmθcosmθ)

(W(11){q,k}W(12){q,k}W(21){q,k}W(22){q,k})
(x(1)mx(2)m)
\tag{6} f{q,k}(xm,m)=(cosmθsinmθsinmθcosmθ)(W{q,k}(11)W{q,k}(21)W{q,k}(12)W{q,k}(22))(xm(1)xm(2))(6)
这里的 { q , k } \{q,k\} {q,k}表示 q q q k k k的集合,比如上式对 f q f_q fq f k f_k fk​都成立;包含 sin ⁡ m θ \sin m\theta sinmθ cos ⁡ m θ \cos m\theta cosmθ的矩阵是上面介绍的旋转矩阵。

其中$ (x^{(1)}_m, x^{(2)}_m) 为 为 x_m$ 在二维坐标中的表示。类似地, g g g 可以被视为一个矩阵,从而能够在二维情况下求解等式 ( 4 ) (4) (4)。具体来说,结合相对位置嵌入是很直接的:只需将仿射变换后的词嵌入向量旋转一定角度乘位置索引(旋转 m θ m\theta mθ​),从而解释了旋转位置嵌入背后的直觉。

我们进行直观理解,假设两个向量 q \pmb q q k \pmb k k它们的夹角为 θ \theta θ,根据向量夹角的余弦我们知道 q ⋅ k = ∣ q ∣ ∣ k ∣ cos ⁡ θ \pmb q \cdot \pmb k = |\pmb q||\pmb k| \cos \theta qk=q∣∣kcosθ​。

image-20240408173339571

q \pmb q q(逆时针)旋转 α \alpha α角度后,与 k \pmb k k的夹角变成了 θ + α \theta + \alpha θ+α

image-20240408173856558

k \pmb k k旋转 β \beta β角度后,与 q \pmb q q的夹角变成了 θ − β \theta - \beta θβ

image-20240408174209956

当两个向量同时旋转后,它们的夹角变成了 θ + α − β \theta + \alpha -\beta θ+αβ。内积表达式为:
q ⋅ k = ∣ q ∣ ∣ k ∣ cos ⁡ ( θ + α − β ) \pmb q \cdot \pmb k = |\pmb q||\pmb k| \cos (\theta + \alpha - \beta) qk=q∣∣kcos(θ+αβ)
特殊地,当 α − β = 0 \alpha - \beta =0 αβ=0​​时,即两个向量旋转的角度相同,它们的内积不变。通过这两个向量的夹角来影响内积的值。通过这种直觉,公式(4)是成立的。

为了将我们在二维空间中的结果推广到任意 x i ∈ R d \pmb x_i ∈ \R^d xiRd,其中 d d d 是偶数。我们可以将 d d d 维空间划分为 $d/2 $个子空间(分块矩阵),并结合内积的线性特性进行组合,将 f { q , k } f_{\{q,k\}} f{q,k}​ 转化为:
f { q , k } = ( x m , m ) = R Θ , m d W { q , k } x m (7) f_{\{q,k\}} = (\pmb x_m,m) = \pmb R_{\Theta,m}^d \pmb W_{\{q,k\}} \pmb x_m \tag{7} f{q,k}=(xm,m)=RΘ,mdW{q,k}xm(7)

这里说的特性是指线性叠加性:

  1. 定义:内积的定义是两个向量对应分量相乘后再相加。假设有两个向量 v ⃗ = ( v 1 , v 2 , . . . , v n ) \vec{v} = (v_1, v_2, ..., v_n) v =(v1,v2,...,vn) w ⃗ = ( w 1 , w 2 , . . . , w n ) \vec{w} = (w_1, w_2, ..., w_n) w =(w1,w2,...,wn),它们的内积可以表示为 v ⃗ ⋅ w ⃗ = v 1 w 1 + v 2 w 2 + . . . + v n w n \vec{v} \cdot \vec{w} = v_1w_1 + v_2w_2 + ... + v_nw_n v w =v1w1+v2w2+...+vnwn

  2. 线性性质:内积满足线性叠加性,即对于任意标量 a a a 和向量 v ⃗ , w ⃗ , u ⃗ \vec{v}, \vec{w}, \vec{u} v ,w ,u ,有以下性质:

    • 可加性: v ⃗ ⋅ ( w ⃗ + u ⃗ ) = v ⃗ ⋅ w ⃗ + v ⃗ ⋅ u ⃗ \vec{v} \cdot (\vec{w} + \vec{u}) = \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{u} v (w +u )=v w +v u
    • 齐次性: ( a v ⃗ ) ⋅ w ⃗ = a ( v ⃗ ⋅ w ⃗ ) (a\vec{v}) \cdot \vec{w} = a(\vec{v} \cdot \vec{w}) (av )w =a(v w )

其中
R Θ , m d = ( cos ⁡ m θ 1 − sin ⁡ m θ 1 0 0 ⋯ 0 0 sin ⁡ m θ 1 cos ⁡ m θ 1 0 0 ⋯ 0 0 0 0 cos ⁡ m θ 2 − sin ⁡ m θ 2 ⋯ 0 0 0 0 sin ⁡ m θ 2 cos ⁡ m θ 2 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 0 ⋯ cos ⁡ m θ d / 2 − sin ⁡ m θ d / 2 0 0 0 0 ⋯ sin ⁡ m θ d / 2 cos ⁡ m θ d / 2 ) (8) \pmb R_{\Theta,m}^d = (cosmθ1sinmθ10000sinmθ1cosmθ1000000cosmθ2sinmθ20000sinmθ2cosmθ2000000cosmθd/2sinmθd/20000sinmθd/2cosmθd/2)

\tag{8} RΘ,md= cosmθ1sinmθ10000sinmθ1cosmθ1000000cosmθ2sinmθ20000sinmθ2cosmθ2000000cosmθd/2sinmθd/20000sinmθd/2cosmθd/2 (8)
是一个带有预定义参数 Θ = { θ i = 1000 0 − 2 ( i − 1 ) / d , i ∈ [ 1 , 2 , . . . , d / 2 ] } Θ = \{θ_i = 10000^{−2(i−1)/d}, i ∈ [1, 2, ..., d/2]\} Θ={θi=100002(i1)/d,i[1,2,...,d/2]}​ 的旋转矩阵。RoPE的图示如原论文中的图(1)所示。将RoPE应用于等式(3)中的自注意力机制,我们可以得到:
q m ⊤ k n = ( R Θ , m d W q x m ) ⊤ ( R Θ , n d W k x n ) = x m ⊤ W q R Θ , n − m d W k x n (9) \pmb q_m^\top \pmb k_n = (\pmb R_{\Theta,m}^d \pmb W_{q}\pmb x_m)^\top (\pmb R_{\Theta,n}^d \pmb W_{k}\pmb x_n) = \pmb x_m^\top \pmb W_q \pmb R_{\Theta,n-m}^d \pmb W_k \pmb x_n \tag{9} qmkn=(RΘ,mdWqxm)(RΘ,ndWkxn)=xmWqRΘ,nmdWkxn(9)
其中 R Θ , n − m d = ( R Θ , m d ) ⊤ R Θ , n d \pmb R_{\Theta,n-m}^d=(\pmb R_{\Theta,m}^d)^\top \pmb R_{\Theta,n}^d RΘ,nmd=(RΘ,md)RΘ,nd。值得指出的是, R Θ \pmb R_{\Theta} RΘ​是一个正交矩阵,它不会改变向量的模长,因此通常来说它不会改变原模型的稳定性。

我们可以增大 θ \theta θ的base以支持更长的上下文,这里是10000。

image-20240413084948720

上图所说的是一个长度为6的序列,在进行自注意力计算时,Query和Key向量经过旋转位置编码变换的过程。首先对于位置1来说,记为 m m m。然后仅考虑第一个二维子空间,即 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)向量,旋转 m θ 1 m\theta_1 mθ1后得到的增强表示。

由于公式(8)中 R Θ , m d \pmb R^d_{\Theta,m} RΘ,md的稀疏性,可以通过下述等价方式来实现 R Θ , m d \pmb R^d_{\Theta,m} RΘ,md x ∈ R d \pmb x \in \R^d xRd的乘法:
R Θ , m d x = ( x 1 x 2 x 3 x 4 ⋮ x d − 1 x d ) ⊗ ( cos ⁡ m θ 1 cos ⁡ m θ 1 cos ⁡ m θ 2 cos ⁡ m θ 2 ⋮ cos ⁡ m θ d / 2 cos ⁡ m θ d / 2 ) + ( − x 2 x 1 − x 4 x 3 ⋮ − x d x d − 1 ) ⊗ ( sin ⁡ m θ 1 sin ⁡ m θ 1 sin ⁡ m θ 2 sin ⁡ m θ 2 ⋮ sin ⁡ m θ d / 2 sin ⁡ m θ d / 2 ) (10) \pmb R^d_{\Theta,m} \pmb x =(x1x2x3x4xd1xd)

\otimes(cosmθ1cosmθ1cosmθ2cosmθ2cosmθd/2cosmθd/2)
+ (x2x1x4x3xdxd1)
\otimes(sinmθ1sinmθ1sinmθ2sinmθ2sinmθd/2sinmθd/2)
\tag{10} RΘ,mdx= x1x2x3x4xd1xd cosmθ1cosmθ1cosmθ2cosmθ2cosmθd/2cosmθd/2 + x2x1x4x3xdxd1 sinmθ1sinmθ1sinmθ2sinmθ2sinmθd/2sinmθd/2 (10)
其中 ⊗ \otimes ​是逐位对应相乘。

为什么可以简化成这样子,把乘 x \pmb x x带入公式(8)得到:
R Θ , m d x = ( cos ⁡ m θ 1 − sin ⁡ m θ 1 0 0 ⋯ 0 0 sin ⁡ m θ 1 cos ⁡ m θ 1 0 0 ⋯ 0 0 0 0 cos ⁡ m θ 2 − sin ⁡ m θ 2 ⋯ 0 0 0 0 sin ⁡ m θ 2 cos ⁡ m θ 2 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 0 ⋯ cos ⁡ m θ d / 2 − sin ⁡ m θ d / 2 0 0 0 0 ⋯ sin ⁡ m θ d / 2 cos ⁡ m θ d / 2 ) ( x 1 x 2 x 3 x 4 ⋮ x d − 1 x d ) \pmb R_{\Theta,m}^d \pmb x= (cosmθ1sinmθ10000sinmθ1cosmθ1000000cosmθ2sinmθ20000sinmθ2cosmθ2000000cosmθd/2sinmθd/20000sinmθd/2cosmθd/2)

(x1x2x3x4xd1xd)
RΘ,mdx= cosmθ1sinmθ10000sinmθ1cosmθ1000000cosmθ2sinmθ20000sinmθ2cosmθ2000000cosmθd/2sinmθd/20000sinmθd/2cosmθd/2 x1x2x3x4xd1xd
根据分块矩阵的乘法,我们仅考虑左右两边矩阵的第一块,其得到(10)中向量的第1和第2个元素:
( cos ⁡ m θ 1 − sin ⁡ m θ 1 sin ⁡ m θ 1 cos ⁡ m θ 1 ) ( x 1 x 2 ) = ( x 1 cos ⁡ m θ 1 − x 2 sin ⁡ m θ 1 x 1 sin ⁡ m θ 1 + x 2 cos ⁡ m θ 1 ) (cosmθ1sinmθ1sinmθ1cosmθ1)
(x1x2)
= (x1cosmθ1x2sinmθ1x1sinmθ1+x2cosmθ1)
(cosmθ1sinmθ1sinmθ1cosmθ1)(x1x2)=(x1cosmθ1x2sinmθ1x1sinmθ1+x2cosmθ1)

因此这是成立的。

代码实现

本节参考LLaMA源码来实现旋转位置编码,同时底层实现逻辑进行一个解释。

首先定义一个函数生成旋转矩阵:

def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
  """
  给定维度预计算频率(\theta) Tensor的复指数(complex exponentials,cis)
  Args:
    dim (int): dimension of the frequency tensor
    end (int): end index for precomputing frequencies
    theta (float, optional): scaling factor for frequency computation. Defaults to 10000.0.

  Returns:
    torch.Tensor: Precomputed frequency tensor with complex exponentials.
  """
  # freqs (dim/2, )
  # theta_i = 10000 ** (-2(i-1)/dim) for i = [1,2,...,dim / 2]
  # theta_i
  # we start from 0 dont need to do i-1
  freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
  # generate token sequence m = [0, 1, ..., seq_len - 1]
  # m (end, )
  m = torch.arange(end, device=freqs.device)
  # compute m * \theta
  # freqs (end, dim / 2)
  freqs = torch.outer(m, freqs).float()
  # freqs_cis (end, dim / 2)
  freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
  return freqs_cis
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

这个函数用于生成公式(8)中的旋转矩阵。

首先计算预定义参数 Θ = { θ i = 1000 0 − 2 ( i − 1 ) / d , i ∈ [ 1 , 2 , . . . , d / 2 ] } Θ = \{θ_i = 10000^{−2(i−1)/d}, i ∈ [1, 2, ..., d/2]\} Θ={θi=100002(i1)/d,i[1,2,...,d/2]} ,我们的 i i i 0 0 0开始因此不需要 i − 1 i-1 i1,对应上面的Line 17。

然后考虑所有的位置,生成一个m = (seq_len, )形状的向量,Line 20。

计算m和Line 17计算出来的freqs的外积,即m中的每个位置 m i m_i mi都会乘上 Θ Θ Θ的每个元素,得到一个(seq_len, dim / 2)形状的矩阵。假设序列的长度

假设 m = [ m 1 , m 2 , ⋯   , m T ] = [ 1 , 2 , ⋯   , N ] m=[m_1,m_2,\cdots,m_T] =[1,2,\cdots, N] m=[m1,m2,,mT]=[1,2,,N]​,这里 N N N表示序列长度。

它们的乘积是一个矩阵:
( m 1 θ 1 m 1 θ 2 ⋯ m 1 θ d / 2 m 2 θ 1 m 2 θ 2 ⋯ m 2 θ d / 2 ⋮ ⋮ ⋱ ⋮ m N θ 1 m N θ 2 ⋯ m N θ d / 2 ) (m1θ1m1θ2m1θd/2m2θ1m2θ2m2θd/2mNθ1mNθ2mNθd/2)

m1θ1m2θ1mNθ1m1θ2m2θ2mNθ2m1θd/2m2θd/2mNθd/2
最后在Line 25通过 torch.polar将它们转换为复数形式:
( cos ⁡ ( m 1 θ 1 ) + i ⋅ sin ⁡ ( m 1 θ 1 ) cos ⁡ ( m 1 θ 2 ) + i ⋅ sin ⁡ ( m 1 θ 2 ) ⋯ cos ⁡ ( m 1 θ d / 2 ) + i ⋅ sin ⁡ ( m 1 θ d / 2 ) cos ⁡ ( m 2 θ 1 ) + i ⋅ sin ⁡ ( m 2 θ 1 ) cos ⁡ ( m 2 θ 2 ) + i ⋅ sin ⁡ ( m 2 θ 2 ) ⋯ cos ⁡ ( m 2 θ d / 2 ) + i ⋅ sin ⁡ ( m 2 θ d / 2 ) ⋮ ⋮ ⋱ ⋮ cos ⁡ ( m N θ 1 ) + i ⋅ sin ⁡ ( m N θ 1 ) cos ⁡ ( m N θ 2 ) + i ⋅ sin ⁡ ( m N θ 2 ) ⋯ cos ⁡ ( m N θ d / 2 ) + i ⋅ sin ⁡ ( m N θ d / 2 ) ) (cos(m1θ1)+isin(m1θ1)cos(m1θ2)+isin(m1θ2)cos(m1θd/2)+isin(m1θd/2)cos(m2θ1)+isin(m2θ1)cos(m2θ2)+isin(m2θ2)cos(m2θd/2)+isin(m2θd/2)cos(mNθ1)+isin(mNθ1)cos(mNθ2)+isin(mNθ2)cos(mNθd/2)+isin(mNθd/2))
cos(m1θ1)+isin(m1θ1)cos(m2θ1)+isin(m2θ1)cos(mNθ1)+isin(mNθ1)cos(m1θ2)+isin(m1θ2)cos(m2θ2)+isin(m2θ2)cos(mNθ2)+isin(mNθ2)cos(m1θd/2)+isin(m1θd/2)cos(m2θd/2)+isin(m2θd/2)cos(mNθd/2)+isin(mNθd/2)

torch.polar(abs, angle)基于absangle计算出一个极坐标系中的复数表示:

image-20240524170711764

那如何达到公式(10)的结果呢,为了简单,这里只展示 d = 4 d=4 d=4​的情况,考虑某个Token x \pmb x x
x = [ x 1 x 2 x 3 x 4 ] \pmb x=[x1x2x3x4]

x=[x1x2x3x4]
第一步把 x \pmb x x的元素两两分组:
x = [ [ x 1 , x 2 ] [ x 3 , x 4 ] ] \pmb x=[[x1,x2][x3,x4]]
x=[[x1,x2][x3,x4]]

也不考虑批次维度,形状由(1,4)变成(1,2,2)。然后把新的 x \pmb x x转换成复数的形式,形状变成了(1, 2)
x = [ x 1 + i ⋅ x 2 x 3 + i ⋅ x 4 ] \pmb x=[x1+ix2x3+ix4]
x=[x1+ix2x3+ix4]

即每个二维向量变成了一个复数。然后我们把这个向量矩阵和freqs_cis对应的向量对应位置相乘(分别旋转 m θ 1 , m θ 2 m\theta_1,m\theta_2 mθ1,mθ2角度: d / 2 = 4 / 2 = 2 d/2=4/2=2 d/2=4/2=2),这里假设当前位置为 m m m​,然后有:
x = [ x 1 + i ⋅ x 2 x 3 + i ⋅ x 4 ] ⊗ [ cos ⁡ ( m θ 1 ) + i ⋅ sin ⁡ ( m θ 1 ) cos ⁡ ( m θ 2 ) + i ⋅ sin ⁡ ( m θ 2 ) ] = [ ( x 1 + i ⋅ x 2 ) [ cos ⁡ ( m θ 1 ) + i ⋅ sin ⁡ ( m θ 1 ) ] ( x 3 + i ⋅ x 4 ) [ cos ⁡ ( m θ 2 ) + i ⋅ sin ⁡ ( m θ 2 ) ] ] = [ x 1 cos ⁡ m θ 1 + i ⋅ x 1 sin ⁡ m θ 1 + i ⋅ x 2 cos ⁡ m θ 1 − x 2 sin ⁡ m θ 1 x 3 cos ⁡ m θ 2 + i ⋅ x 3 sin ⁡ m θ 2 + i ⋅ x 4 cos ⁡ m θ 2 − x 4 sin ⁡ m θ 2 ] = [ x 1 cos ⁡ m θ 1 − x 2 sin ⁡ m θ 1 + i ( x 1 sin ⁡ m θ 1 + x 2 cos ⁡ m θ 1 ) x 3 cos ⁡ m θ 2 − x 4 sin ⁡ m θ 2 + i ( x 3 sin ⁡ m θ 2 + x 4 cos ⁡ m θ 2 ) ] xx=[x1+ix2x3+ix4][cos(mθ1)+isin(mθ1)cos(mθ2)+isin(mθ2)]=[(x1+ix2)[cos(mθ1)+isin(mθ1)](x3+ix4)[cos(mθ2)+isin(mθ2)]]=[x1cosmθ1+ix1sinmθ1+ix2cosmθ1x2sinmθ1x3cosmθ2+ix3sinmθ2+ix4cosmθ2x4sinmθ2]=[x1cosmθ1x2sinmθ1+i(x1sinmθ1+x2cosmθ1)x3cosmθ2x4sinmθ2+i(x3sinmθ2+x4cosmθ2)]
x=[x1+ix2x3+ix4][cos(mθ1)+isin(mθ1)cos(mθ2)+isin(mθ2)]=[(x1+ix2)[cos(mθ1)+isin(mθ1)](x3+ix4)[cos(mθ2)+isin(mθ2)]]=[x1cosmθ1+ix1sinmθ1+ix2cosmθ1x2sinmθ1x3cosmθ2+ix3sinmθ2+ix4cosmθ2x4sinmθ2]=[x1cosmθ1x2sinmθ1+i(x1sinmθ1+x2cosmθ1)x3cosmθ2x4sinmθ2+i(x3sinmθ2+x4cosmθ2)]

得到一个形状为(1,2)的复数项链。

然后我们把里面的复数变为二维向量:
x = [ [ x 1 cos ⁡ m 1 θ 1 − x 2 sin ⁡ m 1 θ 1 x 1 sin ⁡ m 1 θ 1 + x 2 cos ⁡ m 1 θ 1 ] [ x 3 cos ⁡ m 1 θ 2 − x 4 sin ⁡ m 1 θ 2 x 3 sin ⁡ m 1 θ 2 + x 4 cos ⁡ m 1 θ 2 ] ] \pmb x= \begin{bmatrix} \begin{bmatrix} x_1 \cos m_1 \theta_1 - x_2 \sin m_1 \theta_1 \\ x_1 \sin m_1 \theta_1 + x_2 \cos m_1 \theta_1 \end{bmatrix}

& [x3cosm1θ2x4sinm1θ2x3sinm1θ2+x4cosm1θ2]
\end{bmatrix} x=[[x1cosm1θ1x2sinm1θ1x1sinm1θ1+x2cosm1θ1][x3cosm1θ2x4sinm1θ2x3sinm1θ2+x4cosm1θ2]]
最后拉平其中的二维向量:
x = [ x 1 cos ⁡ m θ 1 − x 2 sin ⁡ m θ 1 x 1 sin ⁡ m θ 1 + x 2 cos ⁡ m θ 1 x 3 cos ⁡ m θ 2 − x 4 sin ⁡ m θ 2 x 3 sin ⁡ m θ 2 + x 4 cos ⁡ m 1 θ 2 ] \pmb x= [x1cosmθ1x2sinmθ1x1sinmθ1+x2cosmθ1x3cosmθ2x4sinmθ2x3sinmθ2+x4cosm1θ2]
x=[x1cosmθ1x2sinmθ1x1sinmθ1+x2cosmθ1x3cosmθ2x4sinmθ2x3sinmθ2+x4cosm1θ2]

比较公式(10)中前4行的结果,可以发现是一样的,只不过列向量变成了行向量。

基于上面的过程我们就不难理解下面的代码:

def apply_rotary_emb(xq: Tensor, xk: Tensor, freq_cis: Tensor):
  """
  
  使用给定的频率Tensor将旋转嵌入应用到输入张量中。

  该函数使用提供的频率使用给定的频率Tensor将旋转嵌入应用到输入张量中。
  freqs_cis将旋转嵌入应用到给定的查询xq和键xk张量上。输入张量被重塑为复数,并且频率张量被重塑以匹配广播兼容性。生成的张量包含旋转嵌入,并作为实张量返回。

  Args:
      xq (torch.Tensor): Query tensor to apply rotary embeddings.
      xk (torch.Tensor): Key tensor to apply rotary embeddings.
      freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials.

  Returns:
      Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.

  """
  # xq (batch_size, seq_len, n_head, head_dim)
  # xq_ (batch_size, seq_len, n_head, head_dim // 2, 2)
  xq_ = xq.float().reshape(*xq.shape[:-1], -1, 2)
  xk_ = xk.float().reshape(*xk.shape[:-1], -1, 2)

  # turn to complex
  # xq_ (batch_size, seq_len, n_head, head_dim // 2)
  xq_ = torch.view_as_complex(xq_)
  xk_ = torch.view_as_complex(xk_)

  # 应用旋转操作,然后将结果转回实数
  # xq_out (batch_size, seq_len, n_head, head_dim)
  xq_out = torch.view_as_real(xq_ * freq_cis).flatten(2)
  xk_out = torch.view_as_real(xk_ * freq_cis).flatten(2)

  return xq_out.type_as(xq), xk_out.type_as(xk)



  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

下篇文章我们会探讨如何应用旋转位置编码到自注意力上。

参考

  1. [论文笔记]ROFORMER
  2. 复数与二维空间旋转
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/671094
推荐阅读
相关标签
  

闽ICP备14008679号