赞
踩
该实验使用了ConvLSTM模型,对伦敦地区的空气质量进行了时序预测。数据集来源于开源库openair。实验的目标是预测Bloomsbury的空气污染物数值。同时,也利用了Harlington, North Kensington, Marylebone 和Eltham这四个空气质量监测站的数据作为辅助预测。数据的属性有8个,分别为:NOX, NO2, NO, O3, PM2.5, 风速,风向和空气温度。
除了使用ConvLSTM, 该实验还使用了普通LSTM, BiLSTM, Attention+LSTM, LightGBM 和ARIMA进行预测。具体内容可以在github上进行查看:air_pollutants_prediction_lstm。
Bloomsbury=pd.read_csv('/content/drive/My Drive/air_inference/data/Bloomsbury.csv')
Eltham=pd.read_csv('/content/drive/My Drive/air_inference/data/Eltham.csv')
Harlington=pd.read_csv('/content/drive/My Drive/air_inference/data/Harlington.csv')
Marylebone_Road=pd.read_csv('/content/drive/My Drive/air_inference/data/Marylebone_Road.csv')
N_Kensington=pd.read_csv('/content/drive/My Drive/air_inference/data/N_Kensington.csv')
sites_name=['Bloomsbury','Eltham','Harlington','Marylebone_Road','N_Kensington']
air_pollutants_list=['nox','no2','no','o3','pm2.5','ws','wd','air_temp']
sites_dic={
'Bloomsbury':Bloomsbury,
'Eltham':Eltham,
'Harlington':Harlington,
'Marylebone_Road':Marylebone_Road,
'N_Kensington':N_Kensington
}
def show_graph(site):
dataset=sites_dic[site]
values = dataset.values
columns = [4, 5, 6, 7, 8, 9, 10, 13]
pyplot.figure(figsize=(14,14</
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。