赞
踩
降维本质上是从一个维度空间映射到另一个维度空间,特征的多少别没有减少,当然在映射的过程中特征值也会相应的变化。举个例子,现在的特征是1000维,我们想要把它降到500维。降维的过程就是找个一个从1000维映射到500维的映射关系。原始数据中的1000个特征,每一个都对应着降维后的500维空间中的一个值。假设原始特征中有个特征的值是9,那么降维后对应的值可能是3。而对于特征选择来说,有很多方法:
其中过滤式的特征选择后,数据本身不变,而数据的维度减少。而嵌入式的特征选择方法也会改变数据的值,维度也改变。Embedded方式是一种自动学习的特征选择方法,后面讲到具体的方法的时候就能理解了。
特征选择主要有两个功能:
(1)减少特征数量,降维,使模型泛化能力更强,减少过拟合
(2)增强特征和特征值之间的理解
去掉取值变化小的特征(删除低方差特征)
VarianceThr
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。