当前位置:   article > 正文

NumPy库与PyTorch库的异同点_pytorch和numpy的区别

pytorch和numpy的区别

目录

1.单位的创建和操作

1.创建

2.形状变换

2.数学和统计操作

1.矩阵乘法

2.广播

3.统计计算

3.GPU支持

4.在深度学习中的作用

5.应用范围


NumPy库为数组服务,PyTorch库为张量服务,这是最本质的区别。

1.单位的创建和操作

1.创建

NumPy:使用 np.array([1, 2, 3]) 来创建数组。

PyTorch:使用 torch.tensor([1, 2, 3]) 来创建张量。这里的张量在 PyTorch 中与 NumPy 的数组相似。

2.形状变换

NumPy:arr.reshape(2, 3) 用于改变数组形状。

PyTorch:tensor.view(2, 3)tensor.reshape(2, 3) 用于改变张量形状。

2.数学和统计操作

1.矩阵乘法

NumPy:np.dot(a, b)a @ b

PyTorch:torch.matmul(a, b)a @ b

2.广播

广播机制是一种在不同形状的数组(或张量)之间进行数学运算时使用的技术,它能自动扩展数组的维度,使其符合运算要求,从而避免了明确复制数据的需要。这种机制可以显著减少内存使用,并提高计算效率。

NumPyPyTorch 都支持广播机制,允许形状不完全相同的数组进行数学操作。具体可以参考我的NumPy库介绍这篇文章。

3.统计计算

NumPy:arr.mean(), arr.sum(), np.median(arr) 等。

PyTorch:tensor.mean(), tensor.sum(), torch.median(tensor) 等。

3.GPU支持

NumPy:主要在 CPU 上运行,没有内建的 GPU 支持。

PyTorch:可以直接在 GPU 上运行计算,通过 .to('cuda') 方法将张量移动到 GPU。

在这里简单介绍下GPU

GPU(图形处理单元)是一种专门设计用来处理图形和视频渲染的计算设备。不过,由于其高度并行的结构,现在GPU也广泛用于各种高性能计算任务,特别是在数据科学、机器学习和深度学习领域。

如何查看自己的GPU呢?

打开任务管理器,调到性能这一栏

如果想要查看Gpu是否在工作,在命令行用nvidia-smi命令打开,前提是要安装CUDA和nvidia驱动。具体可查看这篇文章Windows10下cmd中nvidia-smi命令输入无效的解决办法_nvidia-smi' 不是内部或外部命令,也不是可运行的程序 或批处理文件。-CSDN博客

 正常跑深度学习模型时,Gpu可达到百分之九十多。

4.在深度学习中的作用

NumPy:不支持自动梯度计算和反向传播,通常需要手动实现或使用其他库。

PyTorch:通过 Autograd 系统自动管理梯度计算和反向传播,使用 tensor.backward() 自动计算梯度。

5.应用范围

NumPy:广泛应用于科学计算领域,如物理模拟、统计分析、图像处理等。

PyTorch:专为深度学习设计,广泛用于构建和训练各种类型的神经网络。

然两者在基本操作上非常相似,但 PyTorch 通过支持动态计算图和 GPU 加速,以及集成深度学习特有的功能(如自动梯度计算),为深度学习提供了更加专业和高效的工具。而 NumPy 则作为一个更通用的科学计算库,在广泛的科学研究领域中都有应用。

以下是在PyTorch库对NumPy库中若干方法的修正

本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号