当前位置:   article > 正文

【Elasticsearch教程8】Mapping字段类型之keyword_elasticsearch keyword

elasticsearch keyword

一、前言

ES的keyword类型家族有3种:

  1. keyword,用于结构化内容,如ID、邮箱、邮编、手机号、主机名、状态码或标记
  2. constant_keyword,某个字段为constant_keyword类型,则该index中,所有文档的该字段的值必须一致
  3. wildcard,存非机构化数据,且值的内容大,相似性低的数据,如HTTP请求体,Log日志这些让人阅读性差的数据。

其中第1个keyword类型是最常用的类型,后面2个类型出现的比较晚,使用的场景也比较少。

二、keyword

2.1 keyword适用场景

keyword类型通常存储结构化数据,对keyword类型不能进行match查询,适合用keyword的例子:

场景
订单状态1:未付款;2:已付款;3:申请退款;4:已退款
HTTP状态码200,400,500,404
ID/手机号/邮箱/性别对手机号没必要分词,也不需要数学计算,所以也不能设为数字类型
用户画像标签学生,IT男,腐女,宝妈
  • ES把keyword类型的值作为一整体存在倒排索引中,不进行分词。
  • keyword适合存结构化数据,如性别、手机号、数据状态、标签HttpCode(404,200,500)等。
  • 字段常用来精确查询、过滤、排序、聚合时,应设为keyword,而不是数值型。
  • 如果某个字段你经常用来做range查询, 你还是设置为数值型(integer,long),ES对数字的range有优化。
  • 还可以把字段设为multi-field,这样又有keyword类型又有数值类型,方便多种方式的使用。
  • 最长支持32766个UTF-8类型的字符,但放入倒排索引时,只截取前一段字符串,长度由ignore_above参数决定,默认"ignore_above" : 256

2.2 keyword实验

(1)创建一个文档

PUT /pigg_user/_doc/1
{
  "name": "冬哥",
  "age": 32
}
  • 1
  • 2
  • 3
  • 4
  • 5

(2)查询name="冬哥"的数据,用termname字段上查询,是查询不到文档的

这条语句是查询不到的
GET /pigg_user/_search
{
  "query": {
    "term": {
      "name": "冬哥"
    }
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

(3)查看文档的mapping
要想探知没有搜到的原因,得先看排查文档的mapping,发现name是text类型,其下面有一个keyword子类型

GET /pigg_user/_mapping

#返回如下
{
  "pigg_user" : {
    "mappings" : {
      "properties" : {
        "age" : {
          "type" : "long"
        },
        "name" : {
          "type" : "text",
          "fields" : {
            "keyword" : {          #这行的keyword是字段名,全称是name.keyword
              "type" : "keyword",  #这行的keyword是指类型
              "ignore_above" : 256 #这里的ignore_above下面会讲
            }
          }
        }
      }
    }
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

(4)分析原因
如果不设置mapping,ES默认把字符串设为text类型,并包含一个keyword子类型
name是text类型,“冬哥”这个词已经被拆成“冬”和“哥”这2个词。
所以上面用term来匹配“冬哥”时,查询不到数据。
简单理解:

  • “name”这个字段按照“冬”和“哥”2个词存的,根据“冬”或者“哥”都能term查询到文档。
  • “name.keyword”这个字段存储的是“冬哥”这完整字符串。
#根据name匹配“冬”,可以查询到文档
GET /pigg_user/_search
{
  "query": {
    "term": {
      "name": "冬"
    }
  }
}

#根据name.keyword匹配"冬哥",可以查询到文档
GET /pigg_user/_search
{
  "query": {
    "term": {
      "name.keyword": "冬哥"
    }
  }
}

#根据name.keyword匹配"冬",查询不到文档
GET /pigg_user/_search
{
  "query": {
    "term": {
      "name.keyword": "冬"
    }
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

2.3 手动设置keyword类型

#先删除之前创建的index
DELETE pigg_user

#设置name为keyword,age为short。
PUT pigg_user
{
  "mappings": {
    "properties": {
      "name": {
        "type":  "keyword"
      },
      "age": {
        "type": "short"
      }
    }
  }
}

#新增一个文档
PUT /pigg_user/_doc/1
{
  "name": "冬哥",
  "age": 32
}

#根据name精确匹配,可以查到数据
GET /pigg_user/_search
{
  "query": {
    "term": {
      "name": "冬哥"
    }
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

三、constant_keyword类型

constant_keyword keyword 字段的特例,用于索引中所有文档具有相同值的情况。

PUT logs-debug
{
  "mappings": {
    "properties": {
      "@timestamp": {
        "type": "date"
      },
      "message": {
        "type": "text"
      },
      "level": {
        "type": "constant_keyword", #指明level这个字段是constant_keyword类型
        "value": "debug"           	#且所有文档的level字段的值都是debug
      }
    }
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

constant_keyword 支持与 keyword 字段相同的查询和聚合,而且constant_keyword的效率更高,因为ES利用所有文档的的某个constant_keyword字段的值必须相同的这一事实,进行了针对性优化。

允许提交没有字段值值等于映射中配置的值的文档。 以下两个索引请求是等效的:

POST logs-debug/_doc
{
  "date": "2019-12-12",
  "message": "Starting up Elasticsearch",
  "level": "debug"
}

POST logs-debug/_doc
{
  "date": "2019-12-12",
  "message": "Starting up Elasticsearch"
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

如果把level设置成非debug的值,比如error,则会返回错误

POST logs-debug/_doc
{
  "date": "2019-12-12",
  "message": "Starting up Elasticsearch",
  "level": "error"
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

返回如下错误提示:

"caused_by" : {
  "type" : "illegal_argument_exception",
  "reason" : "[constant_keyword] field [level] only accepts values that are equal to the value defined in the mappings [debug], but got [error]"
}
  • 1
  • 2
  • 3
  • 4

constant_keyword类型使用的场景确实非常少见,所以用的很少。

四、wildcard类型

当你要在某个非结构化数据上进行wildcardregexp查询的时候,wildcard类型就比较合适了。

  • 这种非结构化数据的内容一般是机器产生的(machine-generated),它们的可阅读比较低,不适合我们人阅读,比如日志message或者HTTP的请求体。
PUT my-index-000001
{
  "mappings": {
    "properties": {
      "my_wildcard": {
        "type": "wildcard"
      }
    }
  }
}

PUT my-index-000001/_doc/1
{
  "my_wildcard" : "This string can be quite lengthy"
}

GET my-index-000001/_search
{
  "query": {
    "wildcard": {
      "my_wildcard": {
        "value": "*quite*lengthy"
      }
    }
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/木道寻08/article/detail/799174
推荐阅读
相关标签
  

闽ICP备14008679号