当前位置:   article > 正文

本地部署大模型?Ollama 部署和实战,看这篇就够了_ollama本地部署大模型

ollama本地部署大模型

写在前面

前几篇,分享的都是如何白嫖国内外各大厂商的免费大模型服务~

有小伙伴问,如果我想在本地搞个大模型玩玩,有什么解决方案?

Ollama,它来了,专为在本地机器便捷部署和运行大模型而设计。

也许是目前最便捷的大模型部署和运行工具,配合Open WebUI,人人都可以拥有大模型自由。

今天,就带着大家实操一番,从 0 到 1 玩转 Ollama。

1. 部署

1.1 Mac & Windows

相对简单,根据你电脑的不同操作系统,下载对应的客户端软件,并安装:

1.2 Linux

推荐大家使用 Linux 服务器进行部署,毕竟大模型的对机器配置还是有一定要求。

裸机部署

step 1: 下载 & 安装

命令行一键下载和安装:

curl -fsSL https://ollama.com/install.sh | sh
  • 1

如果没有报错,它会提示你 ollama 的默认配置文件地址:

Created symlink /etc/systemd/system/default.target.wants/ollama.service → /etc/systemd/system/ollama.service.
  • 1

接下来,我们采用如下命令查看下服务状态, running 就没问题了:

systemctl status ollama
  • 1

查看是否安装成功,出现版本号说明安装成功:

ollama -v
  • 1

step 2: 服务启动

浏览器中打开:http://your_ip:11434/,如果出现 Ollama is running,说明服务已经成功运行。

step 3: 修改配置(可选)
如果有个性化需求,需要修改默认配置:

配置文件在:/etc/systemd/system/ollama.service,采用任意编辑器打开,推荐 vim

  1. 默认只能本地访问,如果需要局域网内其他机器也能访问(比如嵌入式设别要访问本地电脑),需要对 HOST 进行配置,开启监听任何来源IP
[Service]
Environment="OLLAMA_HOST=0.0.0.0"
  • 1
  • 2
  1. 如果需要更改模型存放位置,方便管理,需要对 OLLAMA_MODELS 进行配置:
[Service]
Environment="OLLAMA_MODELS=/data/ollama/models"
  • 1
  • 2

不同操作系统,模型默认存放在:

macOS: ~/.ollama/models
Linux: /usr/share/ollama/.ollama/models
Windows: C:\Users\xxx\.ollama\models
  • 1
  • 2
  • 3
  1. 如果有多张 GPU,可以对 CUDA_VISIBLE_DEVICES 配置,指定运行的 GPU,默认使用多卡。
Environment="CUDA_VISIBLE_DEVICES=0,1"
  • 1

4.配置修改后,需要重启 ollama

systemctl daemon-reload
systemctl restart ollama
  • 1
  • 2

注意:上面两条指令通常需要同时使用:只要你修改了任意服务的配置文件(如 .service 文件),都需要运行systemctl daemon-reload使更改生效。

Docker 部署

我们也介绍下 Docker 部署,无需配置各种环境,相对小白来说,更加友好。

step 1: 一键安装

如果是一台没有 GPU 的轻量级服务器:

docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama --restart always ollama/ollama
  • 1

简单介绍下这个命令的参数:

  • docker run:用于创建并启动一个新的 Docker 容器。
  • -d:表示以分离模式(后台)运行容器。
  • -v ollama:/root/.ollama:将宿主机上的 ollama 目录挂载到容器内的 /root/.ollama 目录,便于数据持久化。
  • -p 11434:11434:将宿主机的 11434 端口映射到容器的 11434 端口,使外部可以访问容器服务。
  • –name ollama:为新创建的容器指定一个名称为 ollama,便于后续管理。
  • –restart always:容器在退出时自动重启,无论是因为错误还是手动停止。
  • ollama/ollama:指定要使用的 Docker 镜像,这里是 ollama 镜像。

宿主机上的数据卷 volume 通常在 /var/lib/docker/volumes/,可以采用如下命令进行查看:

[root@instance-20240702-1632 ~]# docker volume ls
DRIVER    VOLUME NAME
local     dockers_postgres-data
local     ollama
local     open-webui
[root@instance-20240702-1632 ~]# ls /var/lib/docker/volumes/
backingFsBlockDev  dockers_postgres-data  metadata.db  ollama  open-webui
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

如果拥有 Nvidia-GPU:

docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
  • 1

安装成功后,注意要给服务器打开 11434 端口的防火墙,然后浏览器打开 http://your_ip:11434/,如果出现 Ollama is running,说明服务已经成功运行。

step 2: 进入容器

如何进入容器中执行指令呢?

docker exec -it ollama /bin/bash
  • 1

参数说明:

  • exec:在运行中的容器中执行命令。
  • -it:表示以交互模式运行,并分配一个伪终端。
  • ollama:容器的名称。
  • /bin/bash:要执行的命令,这里是打开一个 Bash shell。

执行后,你将进入容器的命令行,和你本地机器上使用没有任何区别。

如果不想进入容器,当然也可以参考如下指令,一键运行容器中的模型:

docker exec -it ollama ollama run qwen2:0.5b
  • 1

如果一段时间内没有请求,模型会自动下线。

2. 使用

2.1 Ollama 常用命令

Ollama 都有哪些指令?

终端输入 ollama

Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information for a model
  run         Run a model
  pull        Pull a model from a registry
  push        Push a model to a registry
  list        List models
  ps          List running models
  cp          Copy a model
  rm          Remove a model
  help        Help about any command

Flags:
  -h, --help      help for ollama
  -v, --version   Show version information

Use "ollama [command] --help" for more information about a command.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

我们翻译过来,和 docker 命令非常类似:

ollama serve	# 启动ollama
ollama create	# 从模型文件创建模型
ollama show		# 显示模型信息
ollama run		# 运行模型,会先自动下载模型
ollama pull		# 从注册仓库中拉取模型
ollama push		# 将模型推送到注册仓库
ollama list		# 列出已下载模型
ollama ps		# 列出正在运行的模型
ollama cp		# 复制模型
ollama rm		# 删除模型
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

2.2 Ollama 模型库

类似 Docker 托管镜像的 Docker Hub,Ollama 也有个 Library 托管支持的大模型。

传送门:https://ollama.com/library

从0.5B 到 236B,各种模型应有尽有,大家可以根据自己的机器配置,选用合适的模型。

同时,官方也贴心地给出了不同 RAM 推荐的模型大小,以及命令:

注:至少确保,8GB的 RAM 用于运行 7B 模型,16GB 用于运行 13B 模型,32GB 用于运行 33B 模型。这些模型需经过量化。

因为我的是一台没有 GPU 的轻量级服务器,所以跑一个 0.5B 的 qwen 模型,给大家做下演示:

root@535ec4243693:/# ollama run qwen2:0.5b
pulling manifest 
pulling 8de95da68dc4... 100% ▕████████████████████████████████████▏ 352 MB                         
pulling 62fbfd9ed093... 100% ▕████████████████████████████████████▏  182 B                         
pulling c156170b718e... 100% ▕████████████████████████████████████▏  11 KB                         
pulling f02dd72bb242... 100% ▕████████████████████████████████████▏   59 B                         
pulling 2184ab82477b... 100% ▕████████████████████████████████████▏  488 B                         
verifying sha256 digest 
writing manifest 
removing any unused layers 
success 
>>> 你是谁
我是来自阿里云的超大规模语言模型——通义千问。我能够理解、生产、传播各种语言和文字,可以回答您在任
何语言或任何问题的问题。

>>> Send a message (/? for help)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

2.3 自定义模型

如果要使用的模型不在 Ollama 模型库怎么办?

GGUF (GPT-Generated Unified Format)模型

GGUF 是由 llama.cpp 定义的一种高效存储和交换大模型预训练结果的二进制格式。

Ollama 支持采用 Modelfile 文件中导入 GGUF 模型。

下面我们以本地的 llama3 举例,详细介绍下实操流程:

step 1: 新建一个文件名为 Modelfile 的文件,然后在其中指定 llama3 模型路径:

FROM /root/models/xxx/Llama3-FP16.gguf
  • 1

step 2: 创建模型

ollama create llama3 -f Modelfile
  • 1

step 3: 运行模型

ollama run llama3
  • 1

终端出现 >>,开启和 Ollama 的对话旅程吧~

下面是几个常用案例:

  • 多行输入:用"""包裹
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
  • 1
  • 2
  • 3
  • 4
  • 多模态模型:文本 + 图片地址
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.
  • 1
  • 2
  • 将提示作为参数传递
$ ollama run llama3 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. 
  • 1
  • 2

PyTorch or Safetensors 模型

Ollama 本身不支持 PyTorch or Safetensors 类型,不过可以通过 llama.cpp 进行转换、量化处理成 GGUF 格式,然后再给 Ollama 使用。

关于 llama.cpp 的使用,小伙伴可以前往官方仓库:https://github.com/ggerganov/llama.cpp。 下载后需要编译使用,成功后会在目录下生成三个可执行文件:

main:模型推理
quantize:模型量化,包括1.5位、2位、3位、4位、5位、6位和8位整数量化
server:提供模型API服务
  • 1
  • 2
  • 3

不过我们只能需要用到它的模型转换功能,还是以 llama3 举例:首先安装项目依赖,然后调用 convert.py 实现模型转换:

pip install -r requirements.txt
python convert.py  /root/xxx/Llama3-Chinese-8B-Instruct/ --outtype f16 --vocab-type bpe --outfile ./models/Llama3-FP16.gguf
  • 1
  • 2

提示词实现模型定制

刚才我们介绍了 Modelfile,其中我们还可以自定义提示词,实现更个性化的智能体。

假设现在你从模型库下载了一个 llama3:

ollama pull llama3
  • 1

然后我们新建一个 Modelfile,其中输入:

FROM llama3

# 设置温度参数
PARAMETER temperature 0.7

# 设置SYSTEM 消息
SYSTEM """
你是猴哥的 AI 智能助手,将基于猴哥发表的所有文章内容回答问题,拒绝回答任何无关内容。
"""
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

Ollama 实现模型量化

Ollama 原生支持 FP16 or FP32 模型的进一步量化,支持的量化方法包括:

Q4_0 Q4_1 Q5_0 Q5_1 Q8_0

K-means Quantizations:
Q3_K_S Q3_K_M Q3_K_L Q4_K_S Q4_K_M Q5_K_S Q5_K_M Q6_K
  • 1
  • 2
  • 3
  • 4

在编写好 Modelfile 文件后,创建模型时加入 -q 标志:

FROM /path/to/my/gemma/f16/model
  • 1
ollama create -q Q4_K_M mymodel -f Modelfile
  • 1

2.3 API 服务

除了本地运行模型以外,还可以把模型部署成 API 服务。

执行下述指令,可以一键启动 REST API 服务:

ollama serve
  • 1

下面介绍两个常用示例:

1、生成回复

curl http://129.150.63.xxx:11434/api/generate -d '{
  "model": "qwen2:0.5b",
  "prompt":"Why is the sky blue?",
  "stream":false
}'
  • 1
  • 2
  • 3
  • 4
  • 5

2、模型对话

curl http://localhost:11434/api/chat -d '{
  "model": "qwen2:0.5b",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ],
  "stream":false
}'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

更多参数和使用,可参考 API 文档:https://github.com/ollama/ollama/blob/main/docs/api.md

2.4 OneAPI 集成

前段时间,我们已经完成了 OneAPI 的部署,见:OneAPI-接口管理和分发神器,将所有大模型一键封装成OpenAI协议

OneAPI 也支持 Ollama 模型,我们只需在 OneAPI 中为 Ollama 添加一个渠道。

创建好之后,点击 测试 一下,右上角出现提示,说明已经配置成功,接下来就可以采用 OpenAI 的方式调用了。

2.5 Open WebUI 界面搭建

Open WebUI 是一个可扩展的自托管 WebUI,前身就是 Ollama WebUI,为 Ollama 提供一个可视化界面,可以完全离线运行,支持 Ollama 和兼容 OpenAI 的 API。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/木道寻08/article/detail/987176
推荐阅读
相关标签