赞
踩
目录
Model Properties
-------------------------
author:Ultralytics
task:detect
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.172
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'GreenCircular', 1: 'GreenLeft', 2: 'GreenRight', 3: 'GreenStraight', 4: 'RedCircular', 5: 'RedLeft', 6: 'RedRight', 7: 'RedStraight'}
---------------------------------------------------------------
Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------
Outputs
-------------------------
name:output0
tensor:Float[1, 12, 8400]
---------------------------------------------------------------
- GreenCircular
- GreenLeft
- GreenRight
- GreenStraight
- RedCircular
- RedLeft
- RedRight
- RedStraight
VS2022
.net framework 4.8
OpenCvSharp 4.8
Microsoft.ML.OnnxRuntime 1.16.2
/// <summary>
/// 结果绘制
/// </summary>
/// <param name="result">识别结果</param>
/// <param name="image">绘制图片</param>
/// <returns></returns>
public Mat draw_result(Result result, Mat image)
{
// 将识别结果绘制到图片上
for (int i = 0; i < result.length; i++)
{
//Console.WriteLine(result.rects[i]);
Cv2.Rectangle(image, result.rects[i], new Scalar(0, 0, 255), 2, LineTypes.Link8);
Cv2.Rectangle(image, new Point(result.rects[i].TopLeft.X-1, result.rects[i].TopLeft.Y - 20),
new Point(result.rects[i].BottomRight.X, result.rects[i].TopLeft.Y), new Scalar(0, 0, 255), -1);
Cv2.PutText(image, result.classes[i] + "-" + result.scores[i].ToString("0.00"),
new Point(result.rects[i].X, result.rects[i].Y - 4),
HersheyFonts.HersheySimplex, 0.6, new Scalar(0, 0, 0), 1);
}
return image;
}
- using Microsoft.ML.OnnxRuntime;
- using Microsoft.ML.OnnxRuntime.Tensors;
- using OpenCvSharp;
- using System;
- using System.Collections.Generic;
- using System.Drawing;
- using System.Linq;
- using System.Text;
- using System.Windows.Forms;
-
- namespace Onnx_Yolov8_Detect
- {
- public partial class Form1 : Form
- {
- public Form1()
- {
- InitializeComponent();
- }
-
- string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
- string image_path = "";
- string startupPath;
- string classer_path;
- string model_path;
-
- DateTime dt1 = DateTime.Now;
- DateTime dt2 = DateTime.Now;
-
- Mat image;
- Mat result_image;
-
- SessionOptions options;
- InferenceSession onnx_session;
- Tensor<float> input_tensor;
- List<NamedOnnxValue> input_ontainer;
- IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
- DisposableNamedOnnxValue[] results_onnxvalue;
-
- Tensor<float> result_tensors;
- float[] result_array;
- float[] factors = new float[2];
-
- Result result;
- DetectionResult result_pro;
- StringBuilder sb = new StringBuilder();
-
- private void button1_Click(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.Filter = fileFilter;
- if (ofd.ShowDialog() != DialogResult.OK) return;
-
- pictureBox1.Image = null;
- pictureBox2.Image = null;
- textBox1.Text = "";
-
- image_path = ofd.FileName;
- pictureBox1.Image = new Bitmap(image_path);
- image = new Mat(image_path);
- }
-
- private void Form1_Load(object sender, EventArgs e)
- {
- startupPath = Application.StartupPath + "\\model\\";
-
- model_path = startupPath + "traffic-lights.onnx";
- classer_path = startupPath + "lable.txt";
-
- // 创建输出会话
- options = new SessionOptions();
- options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
- options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
-
- // 创建推理模型类,读取本地模型文件
- onnx_session = new InferenceSession(model_path, options);
-
- // 输入Tensor
- input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
-
- // 创建输入容器
- input_ontainer = new List<NamedOnnxValue>();
-
- }
-
- private void button2_Click(object sender, EventArgs e)
- {
- if (image_path == "")
- {
- return;
- }
- textBox1.Text = "检测中,请稍等……";
- pictureBox2.Image = null;
- Application.DoEvents();
-
- //图片缩放
- image = new Mat(image_path);
- int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
- Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
- Rect roi = new Rect(0, 0, image.Cols, image.Rows);
- image.CopyTo(new Mat(max_image, roi));
-
- factors[0] = factors[1] = (float)(max_image_length / 640.0);
-
- //将图片转为RGB通道
- Mat image_rgb = new Mat();
- Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
- Mat resize_image = new Mat();
- Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
-
- //输入Tensor
- for (int y = 0; y < resize_image.Height; y++)
- {
- for (int x = 0; x < resize_image.Width; x++)
- {
- input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
- input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
- input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
- }
- }
-
- //将 input_tensor 放入一个输入参数的容器,并指定名称
- input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
-
- dt1 = DateTime.Now;
- //运行 Inference 并获取结果
- result_infer = onnx_session.Run(input_ontainer);
- dt2 = DateTime.Now;
-
- //将输出结果转为DisposableNamedOnnxValue数组
- results_onnxvalue = result_infer.ToArray();
-
- //读取第一个节点输出并转为Tensor数据
- result_tensors = results_onnxvalue[0].AsTensor<float>();
-
- result_array = result_tensors.ToArray();
-
- resize_image.Dispose();
- image_rgb.Dispose();
-
- result_pro = new DetectionResult(classer_path, factors);
- result = result_pro.process_result(result_array);
- result_image = result_pro.draw_result(result, image.Clone());
-
- if (!result_image.Empty())
- {
- pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
- sb.Clear();
- sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
- sb.AppendLine("------------------------------");
- for (int i = 0; i < result.length; i++)
- {
- sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})"
- , result.classes[i]
- , result.scores[i].ToString("0.00")
- , result.rects[i].TopLeft.X
- , result.rects[i].TopLeft.Y
- , result.rects[i].BottomRight.X
- , result.rects[i].BottomRight.Y
- ));
- }
- textBox1.Text = sb.ToString();
- }
- else
- {
- textBox1.Text = "无信息";
- }
- }
-
- }
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。