赞
踩
文末有福利!
大模型应该是目前当之无愧的最有影响力的AI技术,它正在革新各个行业,包括自然语言处理、机器翻译、内容创作和客户服务等等,正在成为未来商业环境的重要组成部分。
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。
本文总结大模型算法岗位面试题(含答案),内容如下:
一、基础篇
1、目前主流的开源模型体系有哪些?
2、prefix LM 和 causal LM 区别是什么?
prefix LM (前缀语言模型):在输入序列的开头添加一个可学习的任务相关的前缀,然后使用这个前缀
和输入序列一起生成输出。这种方法可以引导模型生成适应特定任务的输出。
causal LM (因果语言模型):也称为自回归语言模型,它根据之前生成的 token 预测下一个token。在
生成文本时,模型只能根据已经生成的部分生成后续部分,不能访问未来的信息。
3、涌现能力是啥原因?
涌现能力 (Emergent Ability) 是指模型在训练过程中突然表现出的新的、之前未曾预料到的能力。这种现象通常发生在大型模型中,原因是大型模型具有更高的表示能力和更多的参数,可以更好地捕捉数据中的模式和关联。
随着模型规模的增加,它们能够自动学习到更复杂、更抽象的概念和规律,从而展现出涌现能力。
3、大模型LLM的架构介绍?
大模型LLM(Large Language Models) 通常采用基于Transformer的架构。Transformer模型由多个编码器或解码器层组成,每个层包含多头自注意力机制和前馈神经网络。这些层可以并行处理输入序列中的所有位置,捕获长距离依赖关系。大模型通常具有数十亿甚至数千亿个参数,可以处理大量的文本数据,并在各种NLP任务中表现出色。
前馈神经网络 (Feedforward Neural Network) 是一种最基础的神经网络类型,它的信息流动是单向的,从输入层经过一个或多个隐藏层,最终到达输出层。在前馈神经网络中,神经元之间的连接不会形成闭环,这意味着信号在前向传播过程中不会回溯。前馈神经网络的基本组成单元是神经元,每个神经元都会对输入信号进行加权求和,然后通过一个激活函数产生输出。激活函数通常是非线性的,它决定了神经元的输出是否应该被激活,从而允许网络学习复杂和非线性的函数。
前馈神经网络在模式识别、函数逼近、分类、回归等多个领域都有应用。例如,在图像识别任务中,网络的输入层节点可能对应于图像的像素值,而输出层节点可能代表不同类别的概率分布。
训练前馈神经网络通常涉及反向传播 (Backpropagation) 算法,这是一种有效的学习算法,通过计算输出层的误差,并将这些误差信号沿网络反向传播,以调整连接权重。通过多次迭代这个过程,网络可以逐渐学习如何减少输出误差,从而实现对输入数据的正确分类或回归。
在设计和训练前馈神经网络时,需要考虑多个因素,包括网络的层数、每层的神经元数目、激活函数的选择、学习速率、正则化策略等,这些都对网络的性能有重要影响。
4、目前比较受欢迎的开源大模型有哪些?
GPT系列:由OpenAl开发的生成式预训练模型,如 GPT-3。
BERT系列:由Google开发的转换式预训练模型,如BERT、RoBERTa等。
T5系列:由Google开发的基于Transformer的编码器-解码器模型,如T5、mT5等。
5、目前大模型模型结构都有哪些?
6、prefix LM 和 causal LM、encoder-decoder 区别及各自有什么优缺点?
prefix LM:通过在输入序列前添加可学习的任务相关前缀,引导模型生成适应特定任务的输 出。优点是可以减少对预训练模型参数的修改,降低过拟合风险;缺点是可能受到前缀表示长度的限制,无法充分捕捉任务相关的信息。
causal LM:根据之前生成的 token预测下一个 token, 可以生成连贯的文本。优点是可以生成灵 活的文本,适应各种生成任务;缺点是无法访问未来的信息,可能生成不一致或有误的内容。
encoder-decoder:由编码器和解码器组成,编码器将输入序列编码为固定长度的向量,解码器 根据编码器的输出生成输出序列。优点是可以处理输入和输出序列不同长度的任务,如机器翻译;缺点是模型结构较为复杂,训练和推理计算量较大。
7、模型幻觉是什么?业内解决方案是什么? 模型幻觉是指模型在生成文本时产生的不准确、无关或虚构的信息。这通常发生在模型在缺乏足够信
息的情况下进行推理或生成时。业内的解决方案包括:
使用更多的数据和更高质量的训练数据来提高模型的泛化和准确性。
引入外部知识源,如知识库或事实检查工具,以提供额外的信息和支持。
强化模型的推理能力和逻辑推理,使其能够更好地处理复杂问题和避免幻觉。
8、大模型的Tokenizer的实现方法及原理?
大模型的Tokenizer通常使用字节对编码 (Byte-Pair Encoding,BPE) 算法。BPE算法通过迭代地将最频繁出现的字节对合并成新的符号,来构建一个词汇表。在训练过程中,模型会学习这些符号的嵌入表示。Tokenizer将输入文本分割成符号序列,然后将其转换为模型可以处理的数字表示。
这种方法可以有效地处理大量文本数据,并减少词汇表的规模。
9、ChatGLM3的词表实现方法?
ChatGLM3 使用了一种改进的词表实现方法。它首先使用字节对编码 (BPE) 算法构建一个基本的词表,然后在训练过程中通过不断更新词表来引入新的词汇。具体来说,ChatGLM3 在训练 过程中会根据输入数据动态地合并出现频率较高的字节对,从而形成新的词汇。这样可以有效地处理大量文本数据,并减少词汇表的规模。
同时,ChatGLM3 还使用了一种特殊的词表分割方法,将词表分为多个片段,并在训练过程中逐步更新这些片段,以提高模型的泛化能力和适应性。
10、GPT3、LLAMA、ChatGLM*的Layer Normalization 的区别是什么?各自的优缺点是什么?
GPT3:采用了Post-Layer Normalization (后标准化)的结构,即先进行自注意力或前馈神经网络的计算,然后进行Layer Normalization。这种结构有助于稳定训练过程,提高模型性能。
LLAMA:采用了Pre-Layer Normalization (前标准化)的结构,即先进行Layer Normalization,然后进行自注意力或前馈神经网络的计算。这种结构有助于提高模型的泛化能力和鲁棒性。
ChatGLM:采用了Post-Layer Normalization的结构,类似于GPT3。这种结构可以提高模型的性能和稳定性。
11、大模型常用的激活函数有哪些?
ReLU(Rectified Linear Unit):一种简单的激活函数,可以解决梯度消失问题,加快训练速度。
GeLU(Gaussian Error Linear Unit):一种改进的ReLU函数,可以提供更好的性能和泛化能力。
Swish:一种自门控激活函数,可以提供非线性变换,并具有平滑和非单调的特性。
12、多查询注意力与群查询注意力是否了解**?区别是什么?**
Multi-query Attention 和 Grouped-query Attention 是两种不同的注意力机制变种,用于改进和扩展传统的自注意力机制。Multi-query Attention:在Multi-query Attention中,每个查询可以与多个键值对进行交互,从而 捕捉更多的上下文信息。这种机制可以提高模型的表达能力和性能,特别是在处理长序列或复杂关系时。
Grouped-query Attention:在Grouped-query Attention中,查询被分成多个组,每个组内的查询与对应的键值对进行交互。这种机制可以减少计算复杂度,提高效率,同时仍然保持较好的性能。
13、多模态大模型是否有接触?落地案例?
多模态大模型是指可以处理和理解多种模态数据(如文本、图像、声音等)的模型。落地案例,例如:
OpenAI的DALL-E和GPT-3:DALL-E是一个可以生成图像的模型,而GPT-3可以处理和理解文本。两者结合可以实现基于文本描述生成图像的功能。
Google的Multimodal Transformer:这是一个可以同时处理文本和图像的模型,用于各种多模态任务,如图像字幕生成、视觉问答等。
二、进阶篇
1、llama输入句子长度理论上可以无限长吗?
LLaMA(Large Language Model Adaptation)模型的输入句子长度受到硬件资源和模型设计的限制。
理论上,如果硬件资源足够,模型可以处理非常长的输入句子。然而,实际上,由于内存和处理能力的限制,输入句子长度通常是有限制的。在实际应用中,开发者会根据具体需求和硬件配置来确定合适的输入句子长度。
2、什么是LLMs复读机问题**?**
LLMs复读机问题是指在某些情况下,大型语言模型在生成文本时会重复之前已经生成的内容,导致生成的文本缺乏多样性和创造性。
3、为什么会出现LLMs复读机问题**?**
LLMs复读机问题可能由多种因素引起,包括模型训练数据中的重复模式、模型在处理长序列时的注意力机制失效、或者模型在生成文本时对过去信息的过度依赖等。
4、如何缓解LLMs复读机问题**?**
数据增强:通过增加训练数据的多样性和复杂性,减少重复模式的出现。
模型改进:改进模型的结构和注意力机制,使其更好地处理长序列和避免过度依赖过去信息。
生成策略:在生成文本时采用多样化的策略,如抽样生成或引入随机性,以增加生成文本的多样性。
5、什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型**?**BERT模型通常用于需要理解文本深层语义的任务,如文本分类、命名实体识别等。
LLaMA和 ChatGLM类大模型则适用于需要生成文本或进行更复杂语言理解的任务,如对话系统、文本生成等。选择哪种模型取决于任务的需求和可用资源。
6、各个专业领域是否需要各自的大模型来服务**?**
不同的专业领域需要特定的大模型来更好地服务。专业领域的大模型可以针对特定领域的语言 和知识进行优化,提供更准确和相关的回答和生成文本。
7、如何让大模型处理更长的文本**?**
8、如果想要在某个模型基础上做全参数微调,究竟需要多少显存**?**
全参数微调 (Full Fine-Tuning) 通常需要大量的显存,因为这种方法涉及到更新模型的所有参数。
显存的需求取决于模型的规模、批量大小、以及使用的硬件。例如,对于大型模型如GPT- 3,可能需要多个GPU甚至TPU来分配显存,每个GPU或TPU可能需要几十GB的显存。在实际操作中,需要进行试错法来确定合适的批量大小和硬件配置。
9、为什么SFT之后感觉LLM傻了**?**
SFT(Supervised Fine-Tuning)之后感觉LLM(Large Language Model)“傻了”,可能是因为微调过程中出现了以下问题:
10、SFT指令微调数据如何构建?
11、领域模型Continue PreTrain数据选取**?**
领域模型继续预训练(Continue Pre-Training)的数据选取应该基于领域内的文本特点和应用需求。通常,需要选取大量、高质量、多样化的领域文本数据。数据可以来自专业文献、行业报告、在线论坛、新闻文章等。数据选取时应该注意避免偏见和不平衡,确保数据能够全面地代表领域内的知识和语言使用。
12、领域数据训练后,通用能力往往会有所下降,如何缓解模型遗忘通用能力**?**
13、领域模型Continue PreTrain,如何让模型在预训练过程中就学习到更多的知识**?**
14、进行SFT操作的时候,基座模型选用Chat还是****Base?
在进行指令微调 (SFT) 操作时,选择基座模型 (Chat或Base) 取决于具体任务的需求和模型的性能。通常,如果任务需要生成对话或交互式响应,可以选择对话优化的模型 (Chat)。如果任务更注重理解和生成文本的能力,可以选择基础模型 (Base)。
在实际应用中,可能需要根据实验结果和模型性能来选择最合适的基座模型。
15、领域模型微调指令**&数据输入格式要求?**
领域模型微调的指令和数据输入格式要求取决于所使用的模型和框架。一般来说,指令应该是清晰、具体的,能够指导模型完成特定的任务。数据输入格式通常需要与模型的输入接口相匹配,例如,对于文本模型,数据通常需要是字符串格式,并且可能需要经过特定的预处理,如分词、编码等。
16、领域模型微调领域评测集构建**?**
构建领域模型微调的领域评测集时,应该确保评测集能够全面、准确地反映领域内的任务需求和性能指标。通常,需要从领域内的真实数据中收集或生成评测样本,并确保样本的多样性和代表性。此外,可以根据任务需求设计定制的评价指标,以评估模型在领域内的性能。
17、领域模型词表扩增是不是有必要的**?**
领域模型词表扩增通常是有必要的,尤其是当领域内有大量的专业术语或特定词汇时。词表扩 增可以帮助模型更好地理解和生成领域内的文本,提高模型的领域适应性。然而,词表扩增也需要谨慎进行,以避免引入过多的噪音或不相关的词汇。
**
**
18、如何训练自己的大模型**?**
选择合适的预训练目标和任务:确定模型将学习哪些通用的语言知识,以及针对哪些特定任务进行优化。
收集和准备数据:收集大量、多样化的数据,包括通用数据和特定领域的数据,进行清洗和预处理。
选择模型架构:选择一个适合的模型架构,如Transformer, 并确定模型的规模和层数。
定义训练流程:设置训练参数,如学习率、批量大小、训练轮数等,并选择合适的优化器和损失函数。
训练模型:使用准备好的数据和训练流程开始训练模型,监控训练过程中的性能和资源使用。
评估和调优:在训练过程中定期评估模型的性能,并根据需要调整训练参数和模型架构。
微调和优化:在模型达到一定的性能后,进行微调以适应特定的应用场景和任务需求。
19、训练中文大模型有啥经验**?**
使用大量高质量的中文数据,包括文本、对话、新闻、社交媒体帖子等。
考虑语言的特点,如词序、语法结构、多义性等,并设计相应的预训练任务。
使用适合中文的语言模型架构,如BERT 或GPT, 并进行适当的调整以优化性能。
考虑中文的特殊字符和标点,确保模型能够正确处理这些字符。
进行多任务学习,同时训练多个相关任务,以提高模型的泛化能力。
**
**
20、指令微调的好处**?**
提高模型在特定任务上的性能,使其能够更好地理解和执行指令。
通过指令和示例数据的结合,使模型能够学习到更具体、更实用的知识。
减少了模型对大规模标注数据的依赖,通过少量的指令和示例数据就能进行有效的微调。
可以通过不同的指令和示例数据组合,快速适应不同的任务和应用场景。
21、预训练和微调哪个阶段注入知识的**?**
在预训练阶段,模型通过大量的无监督数据学习通用的语言知识和模式。在微调阶段,模型通过与特定任务相关的监督数据学习特定领域的知识和任务特定的模式。因此,知识注入主要发生在微调阶段。
22、想让模型学习某领域或行业知识,是应该预训练还是应该微调**?**
为了让模型学习某个领域或行业的知识,通常建议先进行预训练,以学习通用的语言知识和模式。预训练可以帮助模型建立强大的语言表示,并提高模型的泛化能力。
然后,可以通过微调来注入特定领域或行业的知识,使模型能够更好地适应特定的任务和应用场景。
23、多轮对话任务如何微调模型**?**
24、微调后的模型出现能力劣化,灾难性遗忘是怎么回事**?**
微调后的模型出现能力劣化,灾难性遗忘可能是因为模型在微调过程中学习到了过多的特定任 务的知识,而忽略了通用的语言知识。这可能导致模型在训练数据上表现良好,但在未见过的数据上表现不佳。
为了解决这个问题,可以采取一些措施,如多任务学习、控制微调强度、定期使用通用数据进行回炉训练等。
**
**
25、微调模型需要多大显存**?**
微调模型需要的显存取决于模型的规模、任务复杂度、数据量等因素。一般来说,微调模型需 要的显存通常比预训练模型少,因为微调涉及到更新的参数较少。然而,具体需要的显存仍然需要根据实际情况进行评估和调整。
26、大模型LLM进行SFT操作的时候在学习什么**?**
27、预训练和SFT操作有什么不同**?**
预训练和SFT操作的主要区别在于目标和数据集。预训练通常是在大规模的无标签数据集上进行的,目的是让模型学习到通用的语言表示和模式。这个过程不需要人工标注数据,而是通过模型自己从数据中学习。
SFT则是在有标签的数据集上进行的,目的是让模型适应特定的任务或领域。这个过程需要人工标注数据,以确保模型能够学习到正确的任务特定的模式和知识。
**
**
28、样本量规模增大,训练出现OOM报错,怎么解决**?**
当样本量规模增大时,训练出现OOM (Out of Memory) 错误可能是由于显存不足导致的。为了解决这个问题,可以尝试以下方法:
增加训练设备的显存,如使用更高性能的GPU或增加GPU数量。
调整批量大小,减少每次训练时处理的样本数量。
使用模型并行或数据并行技术,将模型或数据分片到多个设备上进行训练。
使用动态批处理,根据可用显存动态调整批量大小。
29、大模型LLM进行SFT如何对样本进行优化**?**
数据增强:通过对原始数据进行转换,如文本回译、添加噪声等,生成更多的训练样本。样本选择:选择与特定任务最相关的样本进行训练,以提高训练效率和性能。
样本权重:根据样本的难易程度或重要性为样本分配不同的权重,以优化训练过程。
平衡采样:在训练过程中,确保每个类别或子任务都有足够的样本被训练到。
**
**
30、模型参数迭代实验步骤**?**
模型参数迭代实验是指在训练过程中,对模型的参数进行迭代调整和优化,以提高模型的性能。这通常涉及以下步骤:
31、为什么需要进行参选微调**?参数微调的原因有哪些?**
参数微调是指只对模型的一部分参数进行更新,以适应特定的任务或领域。进行参数微调的原因包括:
提高计算效率:参数微调通常比全量微调需要更少的计算资源,因为只有部分参数需要更新。
减少过拟合风险:只更新与特定任务相关的参数,可以减少模型对训练数据的过度依赖,降低过拟合的风险。
提高泛化能力:参数微调可以使模型在保持通用语言能力的同时,适应特定的任务需求。
32、模型参数微调的方式有那些**?你最常用哪些方法?**
33、prompt tuning 和 prefix tuning在微调上的区别是什么?
Prompt Tuning和Prefix Tuning都是参数高效的微调方法,它们通过在模型输入中添加特定的提示或前缀来引导模型生成适应特定任务的输出。区别在于:
Prompt Tuning:在输入序列的末尾添加可学习的提示,提示可以是几个单词或短语,用于指导模型生成特定的输出。
Prefix Tuning:在输入序列的开头添加可学习的连续前缀表示,前缀表示包含了任务特定的信息,用于引导模型生成适应特定任务的输出。
34、LLaMA-adapter 如何实现稳定训练**?**
LLaMA-adapter 是一种参数高效的微调方法,它通过在预训练模型的每个Transformer层中添加小型适配器模块来实现特定任务的适应。为了实现稳定训练,可以采取以下措施:适配器初始化:使用预训练模型的参数作为适配器模块的初始化,以保持模型的稳定性。
适配器正则化:使用正则化技术,如权重衰减或dropout, 来减少适配器模块的过拟合风险。
逐步学习:逐步调整适配器模块的参数,避免参数更新的幅度过大。
适配器优化:选择合适的优化器和训练策略,如使用较小的学习率、较长的训练周期等,以实现稳定的训练过程。
35、LoRA原理与使用技巧有那些?
LoRA(Low-Rank Adaptation)是一种参数高效的微调方法,它通过引入低秩分解来减少需要更 新的参数数量。LoRA 的工作原理是将预训练模型的注意力矩阵或前馈网络矩阵分解为两个低秩 矩阵的乘积,其中这两个低秩矩阵被视为可学习的任务特定参数。
使用LoRA的技巧包括:
35、LoRA微调优点是什么?
36、AdaLoRA的思路是怎么样的?
AdaLoRA是一种自适应的LoRA方法,它可以根据任务的需求和模型的性能动态调整LoRA适配器模块的参数。AdaLoRA的思路是:
初始化LoRA适配器模块的参数,使用预训练模型的参数作为初始化。
在训练过程中,根据模型的性能和任务需求,动态调整LoRA适配器模块的参数。
通过调整LoRA适配器模块的参数,使模型能够更好地适应特定的任务需求。
36、LoRA权重合入chatglm模型的方法?
在chatGLM 模型的每个Transformer层中添加LoRA 适配器模块。
使用预训练模型的参数作为LoRA 适配器模块的初始化。
在训练过程中,更新LoRA 适配器模块的参数,以适应特定的任务需求。
保持预训练模型的参数不变,避免对预训练模型产生负面影响。
37、P-tuning 讲一下**?与P-tuning v2区别在哪里?优点与缺点?**
P-tuning是一种参数高效的微调方法,它通过在模型输入中添加可学习的连续前缀来引导模型生 成适应特定任务的输出。P-tuning v2是P-tuning的改进版本,它使用了更多的连续前缀表示来引导模型生成适应特定任务的输出。
P-tuning与P-tuning v2的区别在于:
P-tuning的优点是参数高效,计算资源需求较低,可以快速实现模型微调。P-tuning的缺点是可 能受到前缀表示长度的限制,无法充分捕捉任务相关的信息。P-tuning v2通过使用更多的连续前缀,可以更充分地捕捉任务相关的信息,但可能需要更多的计算资源来更新多个前缀的参数。
38、预训练和SFT操作有什么不同**?**
预训练和SFT操作的主要区别在于目标和数据集。预训练通常是在大规模的无标签数据集上进行的,目的是让模型学习到通用的语言表示和模式。这个过程不需要人工标注数据,而是通过模型自己从数据中学习。
SFT则是在有标签的数据集上进行的,目的是让模型适应特定的任务或领域。这个过程需要人工标注数据,以确保模型能够学习到正确的任务特定的模式和知识。
**
**
39、训练一个通用大模型的流程有那些**?**
40、DDO 与 DPO 的区别是什么**?**
DDO(Dual Data Objectives)和DPO(Dual Prompt Objectives)是两种不同的训练策略,用于提高大型语言模型的性能。
41、是否接触过 embeding 模型的微调方法**?**
嵌入模型微调通常涉及调整模型中的嵌入层,以适应特定的任务或领域。这可能包括:初始化:使用特定领域的数据来初始化嵌入层,以便更好地捕捉领域特定的信息。
调整:通过训练或优化嵌入层的参数,使其能够适应特定任务或领域的需求。
知识注入:将领域特定的知识以向量的形式注入到嵌入层中,以增强模型对领域知识的理解和应用。
42、有哪些省内存的大语言模型训练**/微调/推理方法?**
43、大模型 (LLMs) 评测有那些方法**?如何衡量大模型的效果?**
大模型 (LLMs) 的评测方法通常包括:
衡量大模型效果的方法包括:
44、如何解决三个阶段的训练(SFT->RM->PPO)过程较长,更新迭代较慢问题**?**
减少训练数据量:如果训练数据量过大,可以考虑减少数据量,以加快训练速度。
优化训练流程:优化训练流程,如使用更高效的训练算法、调整训练参数等,以加快训练速度。
并行训练:使用多GPU 或多服务器并行训练模型,以加快训练速度。
提前停止:在训练过程中,如果模型性能不再提高,可以提前停止训练,以节省时间。
知识蒸馏:使用一个大型教师模型来指导一个小型学生模型,使学生模型能够快速学习到教师模型的知识。
**
**
45、模型训练的数据集问题:一般数据集哪里找**?**
46、为什么需要进行模型量化及原理**?**
模型量化是将模型中的权重和激活从高精度浮点数转换为低精度整数(如INT8、INT4、FP16等)的过程,目的是减少模型的大小、提高计算效率并降低内存需求。
模型量化的原理在于,低精度数值格式可以提供足够的精度来保持模型性能,同时显著减少数值的位数,从而减少存储和计算资源的使用。
47、大模型词表扩充的方法及工具**?**
大模型词表扩充的方法包括:
**
**
48、大模型应用框架及其功能**?**
大模型应用框架提供了一组工具和库,用于构建、训练和部署大型语言模型。这些框架通常包括以下功能:
一些流行的大模型应用框架包括:
**
**
49、搭建大模型应用遇到过那些问题?如何解决的?
搭建大模型应用时可能会遇到以下问题:
解决这些问题的方法可能包括:
50、如何提升大模型的检索效果**?**
51、是否了解上下文压缩方法**?**
上下文压缩是一种减少模型参数数量和计算复杂度的技术,同时尽量保持模型的性能。这种方法通常涉及:
52、如何实现窗口上下文检索**?**
窗口上下文检索是一种在给定文本片段的上下文中检索相关信息的方法。实现窗口上下文检索通常涉及以下步骤:
53、开源的 RAG 框架有哪些,你比较了解**?**
RAG(Retrieval-Augmented Generation) 是一种结合了检索和生成的框架,用于提高大型语言模型生成文本的质量和相关性。开源的RAG 框架包括:
54、大模型应用框架 LangChain 和 Llamalndex 各自的优势有那些**?**
LangChain和Llamalndex是大模型应用框架,它们提供了构建、训练和部署大型语言模型的工具和库。这些框架的优势包括:
55、向量库有那些**?各自优点与区别?**
TensorFlow: 一个开源的深度学习框架,提供了向量操作和计算的支持。
PyTorch: 另一个流行的深度学习框架,也提供了向量操作和计算的支持。
NumPy: 一个用于数值计算的Python库,提供了向量操作和矩阵运算的支持。
SciPy: 基于NumPy的Python库,提供了用于科学计算的向量操作和函数。
这些向量库的优点包括:
**
**
56、向量数据库有那些**?各自优点与区别?**
向量数据库是一种数据库,专门设计用于存储和查询向量数据,常用于机器学习和数据科学领 域。向量数据库可以高效地处理高维空间数据的相似性搜索,这在图像识别、文本搜索、推荐系统等应用中非常重要。以下是一些流行的向量数据库及其优缺点:
*Milvus*
优点:Milvus 是一个开源的向量数据库,支持多种类型的向量索引,如IVF、HNSW、Flat 等。它提供了可扩展的架构,可以处理大量数据,并支持云原生部署。
缺点:由于是较新的项目,社区和文档可能不如一些老牌数据库成熟。
*Faiss*
优点:Faiss 是 由FacebookAl团队开发的高效相似性搜索和密集向量聚类库。它提供了多种向量索引算法,性能极高。
缺点:作为一个库而不是完整的数据库系统,Faiss 不提供完整的数据管理功能,需要用户自己集成到应用中。
*Vespa*
优点:Vespa 是由Yahoo开发的一个高性能分布式数据存储和查询系统,支持向量相似性搜索和实时数据摄入。
缺点:Vespa的配置和使用相对复杂,可能需要较深的系统知识。
*Pinecone*
优点:Pinecone 是一个托管的向量数据库服务,易于设置和使用,提供了强大的相似性搜索功能。
缺点:作为一个商业服务,Pinecone的成本可能比开源解决方案要高。
*Weaviate*
优点:Weaviate 是一个开源的向量搜索引擎,支持多种数据类型,包括文本、图像和向量,并提供了易于使用的RESTAPI。
缺点:相对于其他一些解决方案,Weaviate 可能还不够成熟,社区较小。
57、使用外部知识数据库时需要对文档进行分块,如何科学的设置文档块的大小**?**
一种科学的方法是进行实验和评估,通过比较不同文档块大小对检索效果、效率和用户体验的影响,来确定最佳的分块大小。
58、LLMs 受到上下文长度的限制,如果检索到的文档带有太多噪声,该如何解决这样的问题**?**
上下文修剪:使用摘要或摘要生成技术来提取文档的关键部分,减少噪声。
知识蒸馏:使用一个大型教师模型来指导一个小型学生模型,使学生模型能够学习到教师模型的知识,从而提高模型的鲁棒性。
过滤和去噪:使用文本过滤和去噪技术,如文本清洗、去重、去除无关信息等,来减少噪声。
强化学习:通过强化学习训练模型,使其能够自动识别和忽略噪声信息,专注于相关和有用的信息。
数据增强:通过对原始数据进行转换,如文本回译(将文本翻译成另一种语言再翻译回来)、添加噪声等,生成更多的训练样本,从而提高模型对噪声的鲁棒性。
知识蒸馏是一种模型压缩技术,其中一个大型的、表现良好的模型(教师模型)被用来训练一 个小型的模型(学生模型)。这个过程涉及到将教师模型的知识转移到学生模型中,通常通过模仿教师模型的输出或中间层的表示。学生模型因此能够学习到如何处理噪声,同时保持较小的模型大小,这有助于在有限的上下文长度内工作。
**
**
**59、**RAG(检索增强生成)对于大模型来说,有什么好处?
60、Self-attention的公式及参数量?为什么用多头?为什么要除以根号d**?**
Self-attention 模型在对当前位置的信息进行编码时,会过度的将注意力集中于自身的位置,因 此作者提出了通过多头注意力机制来解决这一问题。同时,使用多头注意力机制还能够给予注意力层的输出包含有不同子空间中的编码表示信息,从而增强模型的表达能力。
这是因为点积的数量级增长很大,因此将 softmax 函数推向了梯度极小的区域。
Self-attention (自注意力)机制是Transformer模型的核心组成部分,它允许模型在处理序列数据 时,为序列中的每个元素(如词或标记)分配不同的注意力权重,从而捕捉序列内的依赖关系。
Self-attention的基本公式如下:
*计算Query(Q)、Key(K)和Value(V)声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。