当前位置:   article > 正文

只需四步就能构建自己的Agent!达摩院新开源框架小白也能用_agent 开发

agent 开发

现在,小白也可以打造专属的智能体了!

达摩院最新出品Agent框架ModelScope-Agent,直接可用可定制。

在这里插入图片描述

比如,可以同时执行多个工具的规划、调度。

写一篇关于Vision Pro VR眼镜的20字宣传文案,并用女声读出来,同时生成个视频看看。

在这里插入图片描述

也能在多轮对话中持续不同的工具。

在这里插入图片描述

光集成的工具就有这么多,比如NLP、语音、视觉、多模态等多种模型,以及默认集成知识检索、API检索等方案。

在GitHub上还专门提供了详细教程,这就来看看究竟如何构建?

四步构建自己的Agent

1、首先拉取ModelScope-Agent代码并安装相关依赖。

在这里插入图片描述

2、配置config文件,ModelScope token和构建API工具检索引擎。

在这里插入图片描述

3、中枢大模型启动。

在这里插入图片描述

4、Agent构建和使用,依赖之前构建好的大模型,工具list,工具检索和记忆模块。

在这里插入图片描述

构建完毕后,还可以注册新工具。GitHub上同样有食用教程。

开发者们可以参考上述教程很容易搭建属于自己的智能体,ModelScope-Agent 依托魔搭社区,未来会适配更多新增的开源大模型,推出更多应用。

如客户服务Agent、个人助理Agent、Story Agent、Motion Agent、multi-Agent(多模态 Agent)等等。

框架如何设计的?

作为一个通用的、可定制的Agent框架,ModelScope-Agent主要有以下特点:

  • 可定制且功能全面的框架:提供可定制的引擎设计,涵盖了数据收集、工具检索、工具注册、存储管理、定制模型训练和实际应用等功能,可用于快速实现实际场景中的应用。

  • 开源LLMs作为核心组件:支持在 ModelScope 社区的多个开源LLMs上进行模型训练,并开源了配套的中英文工具指令数据集 MSAgent-Bench,用于增强开源大模型作为Agent中枢的规划调度能力。

  • 多样化且全面的API,支持API检索:以统一的方式实现与模型API和常见的功能API进行无缝集成,默认提供开源API检索方案。

它主要包括这些模块,以开源大语言模型 (LLMs) 为核心,以及记忆控制、工具使用等模块。

开源 LLM 主要负责任务规划、调度以及回复生成;记忆控制模块,主要包含知识检索以及 prompt (提示词)管理;工具使用模块,包含工具库以及工具检索和工具可定制化。

在这里插入图片描述

在执行任务时,它会将其拆分成更小的任务,然后一项一项完成。

以写一个简短故事,并用女声朗读,同时配个视频”为例。

ModelScope-Agent 会展示整个任务规划过程,先通过工具检索检索相关的语音合成工具,然后由开源 LLM 进行规划调度——

首先生成一段故事,然后调用对应语音生成模型,生成语音并用女声念出,展示给用户,最后再调用视频生成模型,针对生成的故事内容生成一段视频.

这里全程不需要用户配置当前请求可能需要调用到的工具.

除此之外,他们还提出了新的工具指令微调训练方法:Weighted LM,通过对工具指令调用部分token进行loss加权,提升开源大模型工具指令调用能力。

基于该训练方法和配套的开源中英文工具指令调用数据集MSAgent-Bench,基于Qwen-7B优化训练了MSAgent-Qwen-7B模型,相关数据集和模型都已开源。

在这里插入图片描述

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号