赞
踩
https://github.com/joaomdmoura/crewAI
通过设置多个智能体,协同解决问题,以处理复杂任务;这种方法的实现方式是将一个任务的输出作为另一个任务的输入。它的优势在于小而有效,原理直观易懂,而且所需的调用代码也相当简单。
很多工作需要多次交互才能完成,不同角色 的 Agent 可设置成不同模型,不同辅助工具,非常好用。
当前版本 python 代码 800 多行,但几乎是我看过最简单好用的多工具组合策略。
除了 openai,还可以支持本地搭建的模型 ollama。
$ pip install crewai
import os from crewai import Agent, Task, Crew, Process os.environ["OPENAI_API_KEY"] = "YOUR KEY" from langchain.tools import DuckDuckGoSearchRun search_tool = DuckDuckGoSearchRun() # Define your agents with roles and goals researcher = Agent( role='Senior Research Analyst', goal='Uncover cutting-edge developments in AI and data science in', backstory="""You work at a leading tech think tank. Your expertise lies in identifying emerging trends. You have a knack for dissecting complex data and presenting actionable insights.""", verbose=True, allow_delegation=False, tools=[search_tool] ) writer = Agent( role='Tech Content Strategist', goal='Craft compelling content on tech advancements', backstory="""You are a renowned Content Strategist, known for your insightful and engaging articles. You transform complex concepts into compelling narratives.""", verbose=True, allow_delegation=True, ) # Create tasks for your agents task1 = Task( description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024. Identify key trends, breakthrough technologies, and potential industry impacts. Your final answer MUST be a full analysis report""", agent=researcher ) task2 = Task( description="""Using the insights provided, develop an engaging blog post that highlights the most significant AI advancements. Your post should be informative yet accessible, catering to a tech-savvy audience. Make it sound cool, avoid complex words so it doesn't sound like AI. Your final answer MUST be the full blog post of at least 4 paragraphs.""", agent=writer ) # Instantiate your crew with a sequential process crew = Crew( agents=[researcher, writer], tasks=[task1, task2], verbose=2, # You can set it to 1 or 2 to different logging levels ) # Get your crew to work! result = crew.kickoff() print("######################") print(result)
在上述代码中,定义了两个智能体:分析师和内容创作者。他们共同协作,完成了一篇关于预测 AI 2014 发展趋势的博文。
值得一提的是,在这里使用 Langchain 来调用 DuckDuckGo 搜索引擎,以便分析师智能体收集相关信息。具体来说,首先,分析师智能体会利用收集到的信息生成分析结果;然后,这些分析结果将被传递给内容创作者智能体,由他来撰写博文。
模型默认调用 OpenAI GPT-4,测试花费比较高,如果介意,请在 Agent 中设置成便宜的版本
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。