当前位置:   article > 正文

Sklearn线性回归_线性回归sklearn

线性回归sklearn

Scikit-learn 中的线性回归是一个用于监督学习的算法,它用于拟合数据集中的特征和目标变量之间的线性关系。以下是使用 Scikit-learn 实现线性回归的基本步骤:

1. 导入所需库

首先,你需要导入所需的库和模块。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
  • 1
  • 2
  • 3
  • 4
  • 5

2. 准备数据

接下来,你需要准备数据集,通常包括特征和目标变量。

# 假设 x 是特征集,y 是目标变量
x = np.array([[1], [2], [3], [4], [5]])
y = np.array([1, 2, 3, 4, 5])
  • 1
  • 2
  • 3

3. 划分训练集和测试集

为了评估模型的性能,通常需要将数据集划分为训练集和测试集。

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
  • 1

4. 创建线性回归模型

然后,你需要创建一个线性回归模型实例。

linear_regression = LinearRegression()
  • 1

5. 训练模型

使用训练集数据训练模型。

linear_regression.fit(x_train, y_train)
  • 1

6. 预测

使用训练好的模型对测试集进行预测。

y_pred = linear_regression.predict(x_test)
  • 1

7. 评估模型

评估模型的性能,通常使用均方误差(MSE)作为评估指标。

mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
  • 1
  • 2

8. 可视化

可选步骤,使用散点图可视化实际值和预测值。

plt.scatter(x_test, y_test, color='blue')
plt.plot(x_test, y_pred, color='red')
plt.title('Linear Regression')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

9. 模型持久化(可选)

如果你需要保存训练好的模型,可以使用 joblib 库将其保存到文件,以后可以重新加载。

import joblib
# 保存模型
joblib.dump(linear_regression, 'linear_regression_model.joblib')
# 加载模型
loaded_model = joblib.load('linear_regression_model.joblib')
  • 1
  • 2
  • 3
  • 4
  • 5

以上就是使用 Scikit-learn 进行线性回归分析的基本步骤。需要注意的是,线性回归假设特征和目标变量之间存在线性关系,实际应用中需要根据数据特点进行适当的预处理和特征选择。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/爱喝兽奶帝天荒/article/detail/829968
推荐阅读
  

闽ICP备14008679号