赞
踩
YOLOv5代码注释版更新啦,注释的是最近的2021.07.14的版本,且注释更全
github: https://github.com/Laughing-q/yolov5_annotations
YOLOV5训练代码train.py注释与解析
2020.8.31版本
超参数文件hyp解析
训练参数以及main函数解析
train函数解析
2020.7.20版本
训练参数以及main函数解析
train函数解析
本文主要对ultralytics\yolov5的训练代码train.py的解析,由于yolov5还在开发当中,平常多多少少都会修复一些bug或者有一些代码和功能的更新,但基本上不会有很大的改动,故以下注释与解析都是适用的;当然如果有大改动,笔者也会更新注释。
yolov5其他代码解析
2020.9.3
1.更新了最新的代码解析注释(其实也不算最最新的,是这周一(8.31)clone的代码, 最近比较忙,今天才把注释完成,主要在于添加了分布式计算的一些代码,以及更新了一些小细节的东西;
2.由于笔者目前还没试用过分布式训练的代码,可能对这方面代码理解不是很好,如有问题欢迎指正,谢谢;
3.以前版本(7.20)的注释我也会留着;
2020.8.31版本
超参数文件hyp解析
# Hyperparameters for VOC finetuning
# python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
# Hyperparameter Evolution Results
# Generations: 51
# P R mAP.5 mAP.5:.95 box obj cls
# Metrics: 0.625 0.926 0.89 0.677 0.0111 0.00849 0.00124
lr0: 0.00447 # 学习率
lrf: 0.114 # 余弦退火超参数
momentum: 0.873 # 学习率动量
weight_decay: 0.00047 # 权重衰减系数
giou: 0.0306 # giou损失的系数
cls: 0.211 # 分类损失的系数
cls_pw: 0.546 # 分类BCELoss中正样本的权重
obj: 0.421 # 有无物体损失的系数
obj_pw: 0.972 # 有无物体BCELoss中正样本的权重
iou_t: 0.2 # 标签与anchors的iou阈值iou training threshold
anchor_t: 2.26 # 标签的长h宽w/anchor的长h_a宽w_a阈值, 即h/h_a, w/w_a都要在(1/2.26, 2.26)之间anchor-multiple threshold
# anchors: 5.07
fl_gamma: 0.0 # 设为0则表示不使用focal loss(efficientDet default is gamma=1.5)
# 下面是一些数据增强的系数, 包括颜色空间和图片空间
hsv_h: 0.0154 # 色调
hsv_s: 0.9 # 饱和度
hsv_v: 0.619 # 明度
degrees: 0.404 #旋转角度
translate: 0.206 # 水平和垂直平移
scale: 0.86 # 缩放
shear: 0.795 # 剪切
perspective: 0.0 # 透视变换参数
flipud: 0.00756 # 上下翻转
fliplr: 0.5 # 左右翻转
mixup: 0.153 # mixup系数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
训练参数以及main函数解析
if __name__ == '__main__':
"""
opt参数解析:
cfg:模型配置文件,网络结构
data:数据集配置文件,数据集路径,类名等
hyp:超参数文件
epochs:训练总轮次
batch-size:批次大小
img-size:输入图片分辨率大小
rect:是否采用矩形训练,默认False
resume:接着打断训练上次的结果接着训练
nosave:不保存模型,默认False
notest:不进行test,默认False
noautoanchor:不自动调整anchor,默认False
evolve:是否进行超参数进化,默认False
bucket:谷歌云盘bucket,一般不会用到
cache-images:是否提前缓存图片到内存,以加快训练速度,默认False
weights:加载的权重文件
name:数据集名字,如果设置:results.txt to results_name.txt,默认无
device:训练的设备,cpu;0(表示一个gpu设备cuda:0);0,1,2,3(多个gpu设备)
multi-scale:是否进行多尺度训练,默认False
single-cls:数据集是否只有一个类别,默认False
adam:是否使用adam优化器
sync-bn:是否使用跨卡同步BN,在DDP模式使用
local_rank:gpu编号
logdir:存放日志的目录
workers:dataloader的最大worker数量
"""
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='', help='hyperparameters path, i.e. data/hyp.scratch.yaml')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--logdir', type=str, default='runs/', help='logging directory')
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
opt = parser.parse_args()
# Set DDP variables
"""
设置DDP模式的参数
world_size:表示全局进程个数
global_rank:进程编号
"""
opt.total_batch_size = opt.batch_size
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
set_logging(opt.global_rank)
if opt.global_rank in [-1, 0]:
# 检查你的代码版本是否为最新的(不适用于windows系统)
check_git_status()
# Resume
# 是否resume
if opt.resume: # resume an interrupted run
# 如果resume是str,则表示传入的是模型的路径地址
# get_latest_run()函数获取runs文件夹中最近的last.pt
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
log_dir = Path(ckpt).parent.parent # runs/exp0
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
# opt参数也全部替换
with open(log_dir / 'opt.yaml') as f:
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
# opt.cfg设置为'' 对应着train函数里面的操作(加载权重时是否加载权重里的anchor)
opt.cfg, opt.weights, opt.resume = '', ckpt, True
logger.info('Resuming training from %s' % ckpt)
else:
# 获取超参数列表
opt.hyp = opt.hyp or ('data/hyp.finetune.yaml' if opt.weights else 'data/hyp.scratch.yaml')
# 检查配置文件信息
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
# 扩展image_size为[image_size, image_size]一个是训练size,一个是测试size
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
# 根据opt.logdir生成目录
log_dir = increment_dir(Path(opt.logdir) / 'exp', opt.name) # runs/exp1
# 选择设备
device = select_device(opt.device, batch_size=opt.batch_size)
# DDP mode
# DDP 模式
if opt.local_rank != -1:
assert torch.cuda.device_count() > opt.local_rank
# 根据gpu编号选择设备
torch.cuda.set_device(opt.local_rank)
device = torch.device('cuda', opt.local_rank)
# 初始化进程组
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
# 将总批次按照进程数分配给各个gpu
opt.batch_size = opt.total_batch_size // opt.world_size
# 打印opt参数信息
logger.info(opt)
# 加载超参数列表
with open(opt.hyp) as f:
hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
# Train
# 如果不进行超参数进化,则直接调用train()函数,开始训练
if not opt.evolve:
tb_writer = None
if opt.global_rank in [-1, 0]:
# 创建tensorboard
logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
tb_writer = SummaryWriter(log_dir=log_dir) # runs/exp0
train(hyp, opt, device, tb_writer)
# Evolve hyperparameters (optional)
else:
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
# 超参数进化列表,括号里分别为(突变规模, 最小值,最大值)
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
'momentum': (0.1, 0.6, 0.98), # SGD momentum/Adam beta1
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
'giou': (1, 0.02, 0.2), # GIoU loss gain
'cls': (1, 0.2, 4.0), # cls loss gain
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
'iou_t': (0, 0.1, 0.7), # IoU training threshold
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
# 'anchors': (1, 2.0, 10.0), # anchors per output grid (0 to ignore)
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
'mixup': (1, 0.0, 1.0)} # image mixup (probability)
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
opt.notest, opt.nosave = True, True # only test/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
yaml_file = Path('runs/evolve/hyp_evolved.yaml') # save best result here
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
# 默认进化100次
"""
这里的进化算法是:根据之前训练时的hyp来确定一个base hyp再进行突变;
如何根据?通过之前每次进化得到的results来确定之前每个hyp的权重
有了每个hyp和每个hyp的权重之后有两种进化方式;
1.根据每个hyp的权重随机选择一个之前的hyp作为base hyp,random.choices(range(n), weights=w)
2.根据每个hyp的权重对之前所有的hyp进行融合获得一个base hyp,(x * w.reshape(n, 1)).sum(0) / w.sum()
evolve.txt会记录每次进化之后的results+hyp
每次进化时,hyp会根据之前的results进行从大到小的排序;
再根据fitness函数计算之前每次进化得到的hyp的权重
再确定哪一种进化方式,从而进行进化
"""
for _ in range(100): # generations to evolve
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
# Select parent(s)
# 选择进化方式
parent = 'single' # parent selection method: 'single' or 'weighted'
# 加载evolve.txt
x = np.loadtxt('evolve.txt', ndmin=2)
# 选取至多前5次进化的结果
n = min(5, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness(x))][:n] # top n mutations
# 根据results计算hyp的权重
w = fitness(x) - fitness(x).min() # weights
# 根据不同进化方式获得base hyp
if parent == 'single' or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
elif parent == 'weighted':
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
# Mutate
# 超参数进化
mp, s = 0.9, 0.2 # mutation probability, sigma
npr = np.random
npr.seed(int(time.time()))
# 获取突变初始值
g = np.array([x[0] for x in meta.values()]) # gains 0-1
ng = len(meta)
v = np.ones(ng)
# 设置突变
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
# 将突变添加到base hyp上
# [i+7]是因为x中前七个数字为results的指标(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后才是超参数hyp
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
hyp[k] = float(x[i + 7] * v[i]) # mutate
# Constrain to limits
# 修剪hyp在规定范围里
for k, v in meta.items():
hyp[k] = max(hyp[k], v[1]) # lower limit
hyp[k] = min(hyp[k], v[2]) # upper limit
hyp[k] = round(hyp[k], 5) # significant digits
# Train mutation
# 训练
results = train(hyp.copy())
# Write mutation results
"""
写入results和对应的hyp到evolve.txt
evolve.txt文件每一行为一次进化的结果
一行中前七个数字为(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后为hyp
保存hyp到yaml文件
"""
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
# Plot results
plot_evolution(yaml_file)
print('Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these '
'hyperparameters: $ python train.py --hyp %s' % (yaml_file, yaml_file))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
train函数解析
import argparse
import logging
import math
import os
import random
import shutil
import time
from pathlib import Path
import numpy as np
import torch.distributed as dist
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import test # import test.py to get mAP after each epoch
from models.yolo import Model
from utils.datasets import create_dataloader
from utils.general import (
torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights,
compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file,
check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution, set_logging)
from utils.google_utils import attempt_download
from utils.torch_utils import init_seeds, ModelEMA, select_device, intersect_dicts
logger = logging.getLogger(__name__)
def train(hyp, opt, device, tb_writer=None):
logger.info(f'Hyperparameters {hyp}')
# 获取记录训练日志的路径
"""
训练日志包括:权重、tensorboard文件、超参数hyp、设置的训练参数opt(也就是epochs,batch_size等),result.txt
result.txt包括: 占GPU内存、训练集的GIOU loss, objectness loss, classification loss, 总loss,
targets的数量, 输入图片分辨率, 准确率TP/(TP+FP),召回率TP/P ;
测试集的mAP50, mAP@0.5:0.95, GIOU loss, objectness loss, classification loss.
还会保存batch<3的ground truth
"""
# 如果设置进化算法则不会传入tb_writer(则为None),设置一个evolve文件夹作为日志目录
log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory
# 设置保存权重的路径
wdir = log_dir / 'weights' # weights directory
os.makedirs(wdir, exist_ok=True)
last = wdir / 'last.pt'
best = wdir / 'best.pt'
# 设置保存results的路径
results_file = str(log_dir / 'results.txt')
# 获取轮次、批次、总批次(涉及到分布式训练)、权重、进程序号(主要用于分布式训练)
epochs, batch_size, total_batch_size, weights, rank = \
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
# Save run settings
# 保存hyp和opt
with open(log_dir / 'hyp.yaml', 'w') as f:
yaml.dump(hyp, f, sort_keys=False)
with open(log_dir / 'opt.yaml', 'w') as f:
yaml.dump(vars(opt), f, sort_keys=False)
# Configure
cuda = device.type != 'cpu'
# 设置随机种子
init_seeds(2 + rank)
# 加载数据配置信息
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
# torch_distributed_zero_first同步所有进程
# check_dataset检查数据集,如果没找到数据集则下载数据集(仅适用于项目中自带的yaml文件数据集)
with torch_distributed_zero_first(rank):
check_dataset(data_dict) # check
# 获取训练集、测试集图片路径
train_path = data_dict['train']
test_path = data_dict['val']
# 获取类别数量和类别名字
# 如果设置了opt.single_cls则为一类
nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
# Model
pretrained = weights.endswith('.pt')
# 如果采用预训练
if pretrained:
# 加载模型,从google云盘中自动下载模型
# 但通常会下载失败,建议提前下载下来放进weights目录
with torch_distributed_zero_first(rank):
attempt_download(weights) # download if not found locally
# 加载检查点
ckpt = torch.load(weights, map_location=device) # load checkpoint
# if hyp['anchors']:
# ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor
"""
这里模型创建,可通过opt.cfg,也可通过ckpt['model'].yaml
这里的区别在于是否是resume,resume时会将opt.cfg设为空,
则按照ckpt['model'].yaml创建模型;
这也影响着下面是否除去anchor的key(也就是不加载anchor),
如果resume,则加载权重中保存的anchor来继续训练;
主要是预训练权重里面保存了默认coco数据集对应的anchor,
如果用户自定义了anchor,再加载预训练权重进行训练,会覆盖掉用户自定义的anchor;
所以这里主要是设定一个,如果加载预训练权重进行训练的话,就去除掉权重中的anchor,采用用户自定义的;
如果是resume的话,就是不去除anchor,就权重和anchor一起加载, 接着训练;
参考https://github.com/ultralytics/yolov5/issues/459
所以下面设置了intersect_dicts,该函数就是忽略掉exclude中的键对应的值
"""
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
# 如果opt.cfg存在(表示采用预训练权重进行训练)就设置去除anchor
exclude = ['anchor'] if opt.cfg else [] # exclude keys
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
model.load_state_dict(state_dict, strict=False) # load
# 显示加载预训练权重的的键值对和创建模型的键值对
# 如果设置了resume,则会少加载两个键值对(anchors,anchor_grid)
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
else:
# 创建模型, ch为输入图片通道
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
# Freeze
"""
冻结模型层,设置冻结层名字即可
具体可以查看https://github.com/ultralytics/yolov5/issues/679
但作者不鼓励冻结层,因为他的实验当中显示冻结层不能获得更好的性能,参照:https://github.com/ultralytics/yolov5/pull/707
并且作者为了使得优化参数分组可以正常进行,在下面将所有参数的requires_grad设为了True
其实这里只是给一个freeze的示例
"""
freeze = ['', ] # parameter names to freeze (full or partial)
if any(freeze):
for k, v in model.named_parameters():
if any(x in k for x in freeze):
print('freezing %s' % k)
v.requires_grad = False
# Optimizer
"""
nbs为模拟的batch_size;
就比如默认的话上面设置的opt.batch_size为16,这个nbs就为64,
也就是模型梯度累积了64/16=4(accumulate)次之后
再更新一次模型,变相的扩大了batch_size
"""
nbs = 64 # nominal batch size
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
# 根据accumulate设置权重衰减系数
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
# 将模型分成三组(weight、bn, bias, 其他所有参数)优化
for k, v in model.named_parameters():
v.requires_grad = True
if '.bias' in k:
pg2.append(v) # biases
elif '.weight' in k and '.bn' not in k:
pg1.append(v) # apply weight decay
else:
pg0.append(v) # all else
# 选用优化器,并设置pg0组的优化方式
if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
# 设置weight、bn的优化方式
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
# 设置biases的优化方式
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
# 打印优化信息
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
del pg0, pg1, pg2
# 设置学习率衰减,这里为余弦退火方式进行衰减
# 就是根据以下公式lf,epoch和超参数hyp['lrf']进行衰减
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# plot_lr_scheduler(optimizer, scheduler, epochs)
# Resume
# 初始化开始训练的epoch和最好的结果
# best_fitness是以[0.0, 0.0, 0.1, 0.9]为系数并乘以[精确度, 召回率, mAP@0.5, mAP@0.5:0.95]再求和所得
# 根据best_fitness来保存best.pt
start_epoch, best_fitness = 0, 0.0
if pretrained:
# Optimizer
# 加载优化器与best_fitness
if ckpt['optimizer'] is not None:
optimizer.load_state_dict(ckpt['optimizer'])
best_fitness = ckpt['best_fitness']
# Results
# 加载训练结果result.txt
if ckpt.get('training_results') is not None:
with open(results_file, 'w') as file:
file.write(ckpt['training_results']) # write results.txt
# Epochs
# 加载训练的轮次
start_epoch = ckpt['epoch'] + 1
"""
如果resume,则备份权重
尽管目前resume能够近似100%成功的起作用了,参照:https://github.com/ultralytics/yolov5/pull/756
但为了防止resume时出现其他问题,把之前的权重覆盖了,所以这里进行备份,参照:https://github.com/ultralytics/yolov5/pull/765
"""
if opt.resume:
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
shutil.copytree(wdir, wdir.parent / f'weights_backup_epoch{start_epoch - 1}') # save previous weights
"""
如果新设置epochs小于加载的epoch,
则视新设置的epochs为需要再训练的轮次数而不再是总的轮次数
"""
if epochs < start_epoch:
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(weights, ckpt['epoch'], epochs))
epochs += ckpt['epoch'] # finetune additional epochs
del ckpt, state_dict
# Image sizes
# 获取模型总步长和模型输入图片分辨率
gs = int(max(model.stride)) # grid size (max stride)
# 检查输入图片分辨率确保能够整除总步长gs
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
# DP mode
# 分布式训练,参照:https://github.com/ultralytics/yolov5/issues/475
# DataParallel模式,仅支持单机多卡
# rank为进程编号, 这里应该设置为rank=-1则使用DataParallel模式
# rank=-1且gpu数量=1时,不会进行分布式
if cuda and rank == -1 and torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
# SyncBatchNorm
# 使用跨卡同步BN
if opt.sync_bn and cuda and rank != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
logger.info('Using SyncBatchNorm()')
# Exponential moving average
# 为模型创建EMA指数滑动平均,如果GPU进程数大于1,则不创建
ema = ModelEMA(model) if rank in [-1, 0] else None
# DDP mode
# 如果rank不等于-1,则使用DistributedDataParallel模式
# local_rank为gpu编号,rank为进程,例如rank=3,local_rank=0 表示第 3 个进程内的第 1 块 GPU。
if cuda and rank != -1:
model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank))
# Trainloader
# 创建训练集dataloader
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
world_size=opt.world_size, workers=opt.workers)
"""
获取标签中最大的类别值,并于类别数作比较
如果大于类别数则表示有问题
"""
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
nb = len(dataloader) # number of batches
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
# Testloader
if rank in [-1, 0]:
# 更新ema模型的updates参数,保持ema的平滑性
ema.updates = start_epoch * nb // accumulate # set EMA updates
# 创建测试集dataloader
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,
hyp=hyp, augment=False, cache=opt.cache_images, rect=True, rank=-1,
world_size=opt.world_size, workers=opt.workers)[0] # only runs on process 0
# Model parameters
# 根据自己数据集的类别数设置分类损失的系数
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
# 设置类别数,超参数
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
"""
设置giou的值在objectness loss中做标签的系数, 使用代码如下
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype)
这里model.gr=1,也就是说完全使用标签框与预测框的giou值来作为该预测框的objectness标签
"""
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
# 根据labels初始化图片采样权重
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
# 获取类别的名字
model.names = names
# Class frequency
if rank in [-1, 0]:
# 将所有样本的标签拼接到一起shape为(total, 5),统计后做可视化
labels = np.concatenate(dataset.labels, 0)
# 获得所有样本的类别
c = torch.tensor(labels[:, 0]) # classes
# cf = torch.bincount(c.long(), minlength=nc) + 1.
# model._initialize_biases(cf.to(device))
# 根据上面的统计对所有样本的类别,中心点xy位置,长宽wh做可视化
plot_labels(labels, save_dir=log_dir)
if tb_writer:
# tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384
tb_writer.add_histogram('classes', c, 0)
# Check anchors
"""
计算默认锚点anchor与数据集标签框的长宽比值
标签的长h宽w与anchor的长h_a宽w_a的比值, 即h/h_a, w/w_a都要在(1/hyp['anchor_t'], hyp['anchor_t'])是可以接受的
如果标签框满足上面条件的数量小于总数的99%,则根据k-mean算法聚类新的锚点anchor
"""
if not opt.noautoanchor:
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
# Start training
t0 = time.time()
# 获取热身训练的迭代次数
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
# 初始化mAP和results
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
"""
设置学习率衰减所进行到的轮次,
目的是打断训练后,--resume接着训练也能正常的衔接之前的训练进行学习率衰减
"""
scheduler.last_epoch = start_epoch - 1 # do not move
# 通过torch1.6自带的api设置混合精度训练
scaler = amp.GradScaler(enabled=cuda)
"""
打印训练和测试输入图片分辨率
加载图片时调用的cpu进程数
从哪个epoch开始训练
"""
logger.info('Image sizes %g train, %g test' % (imgsz, imgsz_test))
logger.info('Using %g dataloader workers' % dataloader.num_workers)
logger.info('Starting training for %g epochs...' % epochs)
# torch.autograd.set_detect_anomaly(True)
# 训练
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()
# Update image weights (optional)
if dataset.image_weights:
# Generate indices
"""
如果设置进行图片采样策略,
则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数
通过random.choices生成图片索引indices从而进行采样
"""
if rank in [-1, 0]:
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
dataset.indices = random.choices(range(dataset.n), weights=image_weights,
k=dataset.n) # rand weighted idx
# Broadcast if DDP
# 如果是DDP模式,则广播采样策略
if rank != -1:
indices = torch.zeros([dataset.n], dtype=torch.int)
if rank == 0:
indices[:] = torch.tensor(dataset.indices, dtype=torch.int)
# 广播索引到其他group
dist.broadcast(indices, 0)
if rank != 0:
dataset.indices = indices.cpu().numpy()
# Update mosaic border
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
# 初始化训练时打印的平均损失信息
mloss = torch.zeros(4, device=device) # mean losses
if rank != -1:
# DDP模式下打乱数据, ddp.sampler的随机采样数据是基于epoch+seed作为随机种子,
# 每次epoch不同,随机种子就不同
dataloader.sampler.set_epoch(epoch)
pbar = enumerate(dataloader)
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
if rank in [-1, 0]:
# tqdm 创建进度条,方便训练时 信息的展示
pbar = tqdm(pbar, total=nb) # progress bar
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
# 计算迭代的次数iteration
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
"""
热身训练(前nw次迭代)
在前nw次迭代中,根据以下方式选取accumulate和学习率
"""
if ni <= nw:
xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
"""
bias的学习率从0.1下降到基准学习率lr*lf(epoch),
其他的参数学习率从0增加到lr*lf(epoch).
lf为上面设置的余弦退火的衰减函数
"""
x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
# 动量momentum也从0.9慢慢变到hyp['momentum'](default=0.937)
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
# Multi-scale
# 设置多尺度训练,从imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸
if opt.multi_scale:
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Forward
# 混合精度
with amp.autocast(enabled=cuda):
# 前向传播
pred = model(imgs) # forward
# Loss
# 计算损失,包括分类损失,objectness损失,框的回归损失
# loss为总损失值,loss_items为一个元组,包含分类损失,objectness损失,框的回归损失和总损失
loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
if rank != -1:
# 平均不同gpu之间的梯度
loss *= opt.world_size # gradient averaged between devices in DDP mode
# Backward
# 反向传播
scaler.scale(loss).backward()
# Optimize
# 模型反向传播accumulate次之后再根据累积的梯度更新一次参数
if ni % accumulate == 0:
scaler.step(optimizer) # optimizer.step
scaler.update()
optimizer.zero_grad()
if ema:
ema.update(model)
# Print
if rank in [-1, 0]:
# 打印显存,进行的轮次,损失,target的数量和图片的size等信息
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % (
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
# 进度条显示以上信息
pbar.set_description(s)
# Plot
# 将前三次迭代batch的标签框在图片上画出来并保存
if ni < 3:
f = str(log_dir / ('train_batch%g.jpg' % ni)) # filename
result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
if tb_writer and result is not None:
tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
# tb_writer.add_graph(model, imgs) # add model to tensorboard
# end batch ------------------------------------------------------------------------------------------------
# Scheduler
# 进行学习率衰减
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
scheduler.step()
# DDP process 0 or single-GPU
if rank in [-1, 0]:
# mAP
if ema:
# 更新EMA的属性
# 添加include的属性
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
# 判断该epoch是否为最后一轮
final_epoch = epoch + 1 == epochs
# 对测试集进行测试,计算mAP等指标
# 测试时使用的是EMA模型
if not opt.notest or final_epoch: # Calculate mAP
results, maps, times = test.test(opt.data,
batch_size=total_batch_size,
imgsz=imgsz_test,
model=ema.ema,
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=log_dir)
# Write
# 将指标写入result.txt
with open(results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
# 如果设置opt.bucket, 上传results.txt到谷歌云盘
if len(opt.name) and opt.bucket:
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
# Tensorboard
# 添加指标,损失等信息到tensorboard显示
if tb_writer:
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/giou_loss', 'val/obj_loss', 'val/cls_loss', # val loss
'x/lr0', 'x/lr1', 'x/lr2'] # params
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
tb_writer.add_scalar(tag, x, epoch)
# Update best mAP
# 更新best_fitness
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
if fi > best_fitness:
best_fitness = fi
# Save model
"""
保存模型,还保存了epoch,results,optimizer等信息,
optimizer将不会在最后一轮完成后保存
model保存的是EMA的模型
"""
save = (not opt.nosave) or (final_epoch and not opt.evolve)
if save:
with open(results_file, 'r') as f: # create checkpoint
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': f.read(),
'model': ema.ema,
'optimizer': None if final_epoch else optimizer.state_dict()}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
del ckpt
# end epoch ----------------------------------------------------------------------------------------------------
# end training
if rank in [-1, 0]:
# Strip optimizers
"""
模型训练完后,strip_optimizer函数将optimizer从ckpt中去除;
并且对模型进行model.half(), 将Float32的模型->Float16,
可以减少模型大小,提高inference速度
"""
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
fresults, flast, fbest = 'results%s.txt' % n, wdir / f'last{n}.pt', wdir / f'best{n}.pt'
for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', 'results.txt'], [flast, fbest, fresults]):
if os.path.exists(f1):
os.rename(f1, f2) # rename
if str(f2).endswith('.pt'): # is *.pt
strip_optimizer(f2) # strip optimizer
# 上传结果到谷歌云盘
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
# Finish
# 可视化results.txt文件
if not opt.evolve:
plot_results(save_dir=log_dir) # save as results.png
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
# 释放显存
dist.destroy_process_group() if rank not in [-1, 0] else None
torch.cuda.empty_cache()
return results
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
2020.7.20版本
训练参数以及main函数解析
训练的时候可以设置进行超参数进化算法(默认不使用)。
值得一提的是,由于现在yolov5还在开发当中,训练文件的–resume还不是100%的完善,不建议打断训练再resume。具体可以参照issue292。
if __name__ == '__main__':
# 因为yolov5还在开发当中,check_git_status()检查你的代码版本是否为最新的(不适用于windows系统)
check_git_status()
"""
opt参数解析:
cfg:模型配置文件,网络结构
data:数据集配置文件,数据集路径,类名等
hyp:超参数文件
epochs:训练总轮次
batch-size:批次大小
img-size:输入图片分辨率大小
rect:是否采用矩形训练,默认False
resume:接着打断训练上次的结果接着训练
nosave:不保存模型,默认False
notest:不进行test,默认False
noautoanchor:不自动调整anchor,默认False
evolve:是否进行超参数进化,默认False
bucket:谷歌云盘bucket,一般不会用到
cache-images:是否提前缓存图片到内存,以加快训练速度,默认False
weights:加载的权重文件
name:数据集名字,如果设置:results.txt to results_name.txt,默认无
device:训练的设备,cpu;0(表示一个gpu设备cuda:0);0,1,2,3(多个gpu设备)
multi-scale:是否进行多尺度训练,默认False
single-cls:数据集是否只有一个类别,默认False
"""
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='models/yolov5x_landslide.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/landslide.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--img-size', nargs='+', type=int, default=[416, 416], help='train,test sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const='get_last', default='runs/exp0/weights/last.pt',
help='resume from given path/to/last.pt, or most recent run if blank.')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--weights', type=str, default='', help='initial weights path')
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
opt = parser.parse_args()
"""
resume时获取last.pt的路径
get_latest_run()函数获取runs文件夹中最近的last.pt
注意:进行resume时,不要设置opt.weights(除非设置opt.weights='last.pt'),否则会重新开始训练
"""
last = get_latest_run() if opt.resume == 'get_last' else opt.resume # resume from most recent run
if last and not opt.weights:
print(f'Resuming training from {last}')
opt.weights = last if opt.resume and not opt.weights else opt.weights
# check_file检查文件是否存在
opt.cfg = check_file(opt.cfg) # check file
opt.data = check_file(opt.data) # check file
opt.hyp = check_file(opt.hyp) if opt.hyp else '' # check file
print(opt)
# 扩展image_size为[image_size, image_size]一个是训练size,一个是测试size
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
# 选择设备
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
if device.type == 'cpu':
mixed_precision = False
# Train
# 如果不进行超参数进化,则直接调用train()函数,开始训练
if not opt.evolve:
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
# 创建tensorboard
tb_writer = SummaryWriter(log_dir=increment_dir('runs' + os.sep + 'exp', opt.name))
# 如果设置了超参数文件路径,则加载新的超参数文件
if opt.hyp: # update hyps
with open(opt.hyp) as f:
hyp.update(yaml.load(f, Loader=yaml.FullLoader))
train(hyp)
# Evolve hyperparameters (optional)
# 根据训练结果进行超参数的进化
else:
tb_writer = None
# 设置不测试不保存模型
opt.notest, opt.nosave = True, True # only test/save final epoch
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
# 默认进化十次
"""
这里的进化算法是:根据之前训练时的hyp来确定一个base hyp再进行突变;
如何根据?通过之前每次进化得到的results来确定之前每个hyp的权重
有了每个hyp和每个hyp的权重之后有两种进化方式;
1.根据每个hyp的权重随机选择一个之前的hyp作为base hyp,random.choices(range(n), weights=w)
2.根据每个hyp的权重对之前所有的hyp进行融合获得一个base hyp,(x * w.reshape(n, 1)).sum(0) / w.sum()
evolve.txt会记录每次进化之后的results+hyp
每次进化时,hyp会根据之前的results进行从大到小的排序;
再根据fitness函数计算之前每次进化得到的hyp的权重
再确定哪一种进化方式,从而进行进化
"""
for _ in range(10): # generations to evolve
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
# Select parent(s)
# 选择进化方式
parent = 'single' # parent selection method: 'single' or 'weighted'
# 加载evolve.txt
x = np.loadtxt('evolve.txt', ndmin=2)
# 选取至多前5次进化的结果
n = min(5, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness(x))][:n] # top n mutations
# 根据results计算hyp的权重
w = fitness(x) - fitness(x).min() # weights
# 根据不同进化方式获得base hyp
if parent == 'single' or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
elif parent == 'weighted':
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
# Mutate
# 超参数进化
mp, s = 0.9, 0.2 # mutation probability, sigma
npr = np.random
npr.seed(int(time.time()))
g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1]) # gains
ng = len(g)
v = np.ones(ng)
# 设置突变
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
# 将突变添加到base hyp上
# [i+7]是因为x中前七个数字为results的指标(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后才是超参数hyp
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
hyp[k] = x[i + 7] * v[i] # mutate
# Clip to limits
# 修剪hyp在规定范围里
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])
# Train mutation
# 训练
results = train(hyp.copy())
# Write mutation results
"""
写入results和对应的hyp到evolve.txt
evolve.txt文件每一行为一次进化的结果
一行中前七个数字为(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后为hyp
"""
print_mutation(hyp, results, opt.bucket)
# Plot results
# plot_evolution_results(hyp)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
train函数解析
import argparse
import torch.distributed as dist
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
import test # import test.py to get mAP after each epoch
from models.yolo import Model
from utils import google_utils
from utils.datasets import *
from utils.utils import *
# 设置混精度训练,需要安装英伟达的apex,默认为True,笔者没用到就设置为False
mixed_precision = False
try: # Mixed precision training https://github.com/NVIDIA/apex
from apex import amp
except:
print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
mixed_precision = False # not installed
# 超参数
hyp = {'optimizer': 'SGD', # 优化器['adam', 'SGD', None] if none, default is SGD
'lr0': 0.01, # 学习率initial learning rate (SGD=1E-2, Adam=1E-3)
'momentum': 0.937, # 学习率动量SGD momentum/Adam beta1
'weight_decay': 5e-4, # 权重衰减系数optimizer weight decay
'giou': 0.05, # giou损失的系数giou loss gain
'cls': 0.58, # 分类损失的系数cls loss gain
'cls_pw': 1.0, # 分类BCELoss中正样本的权重cls BCELoss positive_weight
'obj': 1.0, # 有无物体损失的系数obj loss gain (*=img_size/320 if img_size != 320)
'obj_pw': 1.0, # 有无物体BCELoss中正样本的权重obj BCELoss positive_weight
'iou_t': 0.20, # 标签与anchors的iou阈值iou training threshold
'anchor_t': 4.0, # 标签的长h宽w/anchor的长h_a宽w_a阈值, 即h/h_a, w/w_a都要在(1/4, 4)之间anchor-multiple threshold
'fl_gamma': 0.0, # focal loss gamma, 设为0则表示不使用focal loss(efficientDet default is gamma=1.5)
# 下面是一些数据增强的系数, 包括颜色空间和图片空间
'hsv_h': 0.014, # image HSV-Hue augmentation (fraction)
'hsv_s': 0.68, # image HSV-Saturation augmentation (fraction)
'hsv_v': 0.36, # image HSV-Value augmentation (fraction)
'degrees': 0.0, # image rotation (+/- deg)
'translate': 0.0, # image translation (+/- fraction)
'scale': 0.5, # image scale (+/- gain)
'shear': 0.0} # image shear (+/- deg)
def train(hyp):
print(f'Hyperparameters {hyp}')
# 获取记录训练日志的路径
"""
训练日志包括:权重、tensorboard文件、超参数hyp、设置的训练参数opt(也就是epochs,batch_size等),result.txt
result.txt包括: 占GPU内存、训练集的GIOU loss, objectness loss, classification loss, 总loss,
targets的数量, 输入图片分辨率, 准确率TP/(TP+FP),召回率TP/P ;
测试集的mAP50, mAP@0.5:0.95, GIOU loss, objectness loss, classification loss.
还会保存batch<3的ground truth
"""
log_dir = tb_writer.log_dir # run directory
# 设置保存权重的路径
wdir = str(Path(log_dir) / 'weights') + os.sep # weights directory
os.makedirs(wdir, exist_ok=True)
last = wdir + 'last.pt'
best = wdir + 'best.pt'
# 设置保存results的路径
results_file = log_dir + os.sep + 'results.txt'
# Save run settings
# 保存hyp和opt
with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
yaml.dump(hyp, f, sort_keys=False)
with open(Path(log_dir) / 'opt.yaml', 'w') as f:
yaml.dump(vars(opt), f, sort_keys=False)
# 设置轮次、批次、权重
epochs = opt.epochs # 300
batch_size = opt.batch_size # 64
weights = opt.weights # initial training weights
# Configure
# 设置随机种子
init_seeds(1)
# 加载数据配置信息
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
# 获取训练集、测试集图片路径
train_path = data_dict['train']
test_path = data_dict['val']
# 获取类别数量和类别名字
# 如果设置了opt.single_cls则为一类
nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
# Remove previous results
# 移除之前的图片结果
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
os.remove(f)
# Create model
# 创建模型
model = Model(opt.cfg, nc=nc).to(device)
# Image sizes
# 获取模型总步长和模型输入图片分辨率
gs = int(max(model.stride)) # grid size (max stride)
# 检查输入图片分辨率确保能够整除总步长gs
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
# Optimizer
"""
nbs为模拟的batch_size;
就比如默认的话上面设置的opt.batch_size为16,这个nbs就为64,
也就是模型梯度累积了64/16=4(accumulate)次之后
再更新一次模型,变相的扩大了batch_size
"""
nbs = 32 # nominal batch size
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
# 根据accumulate设置权重衰减系数
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
# 将模型分成三组(weight、bn, bias, 其他所有参数)优化
for k, v in model.named_parameters():
if v.requires_grad:
if '.bias' in k:
pg2.append(v) # biases
elif '.weight' in k and '.bn' not in k:
pg1.append(v) # apply weight decay
else:
pg0.append(v) # all else
# 选用优化器,并设置pg0组的优化方式
if hyp['optimizer'] == 'adam': # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
# 设置weight、bn的优化方式
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
# 设置biases的优化方式
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
del pg0, pg1, pg2
# 设置学习率衰减,这里为余弦退火方式进行衰减
# 就是根据以下公式lf与epoch进行衰减
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# plot_lr_scheduler(optimizer, scheduler, epochs, save_dir=log_dir)
# Load Model
# 加载模型,从google云盘中自动下载模型
# 但通常会下载失败,建议提前下载下来放进weights目录
google_utils.attempt_download(weights)
# 初始化开始训练的epoch和最好的结果
# best_fitness是以[0.0, 0.0, 0.1, 0.9]为系数并乘以[精确度, 召回率, mAP@0.5, mAP@0.5:0.95]再求和所得
# 根据best_fitness来保存best.pt
start_epoch, best_fitness = 0, 0.0
if weights.endswith('.pt'): # pytorch format
# 加载检查点
ckpt = torch.load(weights, map_location=device) # load checkpoint
# load model
# 加载模型
try:
ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
if model.state_dict()[k].shape == v.shape} # to FP32, filter
model.load_state_dict(ckpt['model'], strict=False)
except KeyError as e:
s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
"Please delete or update %s and try again, or use --weights '' to train from scratch." \
% (opt.weights, opt.cfg, opt.weights, opt.weights)
raise KeyError(s) from e
# load optimizer
# 加载优化器与best_fitness
if ckpt['optimizer'] is not None:
optimizer.load_state_dict(ckpt['optimizer'])
best_fitness = ckpt['best_fitness']
# load results
# 加载训练结果result.txt
if ckpt.get('training_results') is not None:
with open(results_file, 'w') as file:
file.write(ckpt['training_results']) # write results.txt
# epochs
# 加载训练的轮次
start_epoch = ckpt['epoch'] + 1
"""
如果新设置epochs小于加载的epoch,
则视新设置的epochs为需要再训练的轮次数而不再是总的轮次数
"""
if epochs < start_epoch:
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(opt.weights, ckpt['epoch'], epochs))
epochs += ckpt['epoch'] # finetune additional epochs
del ckpt
# Mixed precision training https://github.com/NVIDIA/apex
# 如果设置混精度训练,初始化混精度训练
if mixed_precision:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
# Distributed training
# 如果不在cpu上计算且gpu数量大于1且pytorch允许分布式,则设置分布式训练
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
dist.init_process_group(backend='nccl', # distributed backend
init_method='tcp://127.0.0.1:9999', # init method
world_size=1, # number of nodes
rank=0) # node rank
model = torch.nn.parallel.DistributedDataParallel(model)
# pip install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html
# Trainloader
# 创建训练集dataloader
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect)
"""
获取标签中最大的类别值,并于类别数作比较
如果大于类别数则表示有问题
"""
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
nb = len(dataloader) # number of batches
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)
# Testloader
# 创建测试集dataloader
testloader = create_dataloader(test_path, imgsz_test, batch_size, gs, opt,
hyp=hyp, augment=False, cache=opt.cache_images, rect=True)[0]
# Model parameters
# 根据自己数据集的类别数设置分类损失的系数
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
# 设置类别数,超参数
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
"""
设置giou的值在objectness loss中做标签的系数, 使用代码如下
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype)
这里model.gr=1,也就是说完全使用标签框与预测框的giou值来作为该预测框的objectness标签
"""
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
# 根据labels初始化图片采样权重
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
# 获取类别的名字
model.names = names
# Class frequency
# 将所有样本的标签拼接到一起shape为(total, 5),统计后做可视化
labels = np.concatenate(dataset.labels, 0)
# 获得所有样本的类别
c = torch.tensor(labels[:, 0]) # classes
# cf = torch.bincount(c.long(), minlength=nc) + 1.
# model._initialize_biases(cf.to(device))
# 根据上面的统计对所有样本的类别,中心点xy位置,长宽wh做可视化
plot_labels(labels, save_dir=log_dir)
# 添加类别的直方图到tensorboard中
if tb_writer:
tb_writer.add_histogram('classes', c, 0)
# Check anchors
"""
计算默认锚点anchor与数据集标签框的长宽比值
标签的长h宽w与anchor的长h_a宽w_a的比值, 即h/h_a, w/w_a都要在(1/hyp['anchor_t'], hyp['anchor_t'])是可以接受的
如果标签框满足上面条件的数量小于总数的99%,则根据k-mean算法聚类新的锚点anchor
"""
if not opt.noautoanchor:
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
# Exponential moving average
# 为模型创建EMA指数滑动平均
ema = torch_utils.ModelEMA(model, updates=start_epoch * nb / accumulate)
print(ema.updates)
# Start training
t0 = time.time()
# 获取热身训练的迭代次数
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
# 初始化mAP和results
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
"""
设置学习率衰减所进行到的轮次,
目的是打断训练后,--resume接着训练也能正常的衔接之前的训练进行学习率衰减
"""
scheduler.last_epoch = start_epoch - 1 # do not move
"""
打印训练和测试输入图片分辨率
加载图片时调用的cpu进程数
从哪个epoch开始训练
"""
print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
print('Using %g dataloader workers' % dataloader.num_workers)
print('Starting training for %g epochs...' % epochs)
# torch.autograd.set_detect_anomaly(True)
# 训练
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
# if epoch == 250:
# exit()
model.train()
# Update image weights (optional)
"""
如果设置进行图片采样策略,
则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数
通过random.choices生成图片索引indices从而进行采样
"""
if dataset.image_weights:
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx
# Update mosaic border
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
# 初始化训练时打印的平均损失信息
mloss = torch.zeros(4, device=device) # mean losses
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
# tqdm 创建进度条,方便训练时 信息的展示
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
# 计算迭代的次数iteration
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
# Warmup
"""
热身训练(前nw次迭代)
在前nw次迭代中,根据以下方式选取accumulate和学习率
"""
if ni <= nw:
xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
"""
bias的学习率从0.1下降到基准学习率lr*lf(epoch),
其他的参数学习率从0增加到lr*lf(epoch).
lf为上面设置的余弦退火的衰减函数
"""
x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
# 动量momentum也从0.9慢慢变到hyp['momentum'](default=0.937)
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
# Multi-scale
# 设置多尺度训练,从imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸
if opt.multi_scale:
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Forward
pred = model(imgs)
# Loss
# 计算损失,包括分类损失,objectness损失,框的回归损失
# loss为总损失值,loss_items为一个元组,包含分类损失,objectness损失,框的回归损失和总损失
loss, loss_items = compute_loss(pred, targets.to(device), model)
# 检查loss是否无穷大(可能时梯度爆炸,或者计算损失梯度时存在log(score)->log(0)->无穷大)
if not torch.isfinite(loss):
print('WARNING: non-finite loss, ending training ', loss_items)
return results
# Backward
# 如果设置混精度训练,混合精度反向传播
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
# Optimize
# 模型反向传播accumulate次之后再根据累积的梯度更新一次参数
if ni % accumulate == 0:
optimizer.step()
optimizer.zero_grad()
ema.update(model)
# Print
# 打印显存,进行的轮次,损失,target的数量和图片的size等信息
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % (
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
# 进度条显示以上信息
pbar.set_description(s)
# Plot
# 将前三次迭代batch的标签框在图片上画出来并保存
if ni < 3:
f = str(Path(log_dir) / ('train_batch%g.jpg' % ni)) # filename
result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
if tb_writer and result is not None:
tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
# tb_writer.add_graph(model, imgs) # add model to tensorboard
# end batch ------------------------------------------------------------------------------------------------
# Scheduler
# 进行学习率衰减
scheduler.step()
# mAP
# 更新EMA的属性
ema.update_attr(model)
# 判断该epoch是否为最后一轮
final_epoch = epoch + 1 == epochs
# 对测试集进行测试,计算mAP等指标
# 测试时使用的是EMA模型
if not opt.notest or final_epoch: # Calculate mAP
results, maps, times = test.test(opt.data,
batch_size=batch_size,
imgsz=imgsz_test,
save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
model=ema.ema,
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=log_dir)
# Write
# 将指标写入result.txt
with open(results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
# 如果设置opt.bucket, 上传results.txt到谷歌云盘
if len(opt.name) and opt.bucket:
os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))
# Tensorboard
# 添加指标,损失等信息到tensorboard显示
if tb_writer:
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
for x, tag in zip(list(mloss[:-1]) + list(results), tags):
tb_writer.add_scalar(tag, x, epoch)
# Update best mAP
# 更新best_fitness
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
if fi > best_fitness:
best_fitness = fi
# Save model
"""
保存模型,还保存了epoch,results,optimizer等信息,
optimizer将不会在最后一轮完成后保存
model保存的是EMA的模型
"""
save = (not opt.nosave) or (final_epoch and not opt.evolve)
if save:
with open(results_file, 'r') as f: # create checkpoint
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': f.read(),
'model': ema.ema,
'optimizer': None if final_epoch else optimizer.state_dict()}
# Save last, best and delete
torch.save(ckpt, last)
if (best_fitness == fi) and not final_epoch:
torch.save(ckpt, best)
del ckpt
# end epoch ----------------------------------------------------------------------------------------------------
# end training
# Strip optimizers
"""
模型训练完后,strip_optimizer函数将optimizer从ckpt中去除;
并且对模型进行model.half(), 将Float32的模型->Float16,
可以减少模型大小,提高inference速度
"""
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
if os.path.exists(f1):
os.rename(f1, f2) # rename
ispt = f2.endswith('.pt') # is *.pt
strip_optimizer(f2) if ispt else None # strip optimizer
# 上传结果到谷歌云盘
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload
# Finish
# 可视化results.txt文件
if not opt.evolve:
plot_results(save_dir=log_dir) # save as results.png
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
# 释放显存
dist.destroy_process_group() if device.type != 'cpu' and torch.cuda.device_count() > 1 else None
torch.cuda.empty_cache()
return results
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。