赞
踩
喜欢可点赞关注,并收藏,您的支持就是我的写作的动力
综述论文
内嵌物理知识神经网络:
基于物理信息的极限学习机:
具体请看对应链接详细解释。
3 神经网络在求解PDE-based物理系统时的重要理论问题
cPINN: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
同样使用区域划分,直接横着划分成矩形区域,而DPINN横着竖着划分为的矩形区域
Extended Physics-InformedNeural Networks (XPINNs): A Generalized Space-Time Domain
Decomposition Based Deep Learning Framework
Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
DPINN: Distributed physics informed neural network for data-efficient solution to partial differential equations
A Derivative-Free Method for Solving Elliptic Partial Differential Equations with Deep Neural Networks
Neural networks catching up with finite differences in solving partial differential equations in higher dimensions
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Understanding and mitigating gradient pathologies in physics-informed neural networks.
Modified physics-informed neural network method based on the conservation law constraint and its prediction of optical solitons
Self-adaptive physics-informed neural networks using a soft attention mechanism
Self-adaptive loss balanced physics-informed neural networks for the incompressible navier-stokes equations
Understanding and mitigating gradient pathologies in physics-informwd neural networks
Multi-objective loss balancing for physics-informed deep learning
内嵌物理的深度学习,机器之心。
A Short Introduction to Physics InformedNeural Networks (PINNs),b站。
气动优化设计中的可解释可迁移机器学习研究,WS-FTNCFD-2022。报告人:清华大学李润泽博士。
leaning operators using deep neural networks for diverse application,哔哩哔哩。
原创不易,转载请带上原文链接,喜欢可关注,后续会不断更新
https://zhuanlan.zhihu.com/p/468748367
https://www.zhihu.com/people/jiu-ri-jiu-ri-1/posts
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。