当前位置:   article > 正文

干货 | 目标检测入门,看这篇就够了(上)

目标识别入门


作者 | 李家丞( 同济大学数学系本科在读,现格灵深瞳算法部实习生)


近年来,深度学习模型逐渐取代传统机器视觉方法而成为目标检测领域的主流算法,本系列文章将回顾早期的经典工作,并对较新的趋势做一个全景式的介绍,帮助读者对这一领域建立基本的认识。(营长注:因本文篇幅较长,营长将其分为上、下两部分。)


导言:目标检测的任务表述


如何从图像中解析出可供计算机理解的信息,是机器视觉的中心问题。深度学习模型由于其强大的表示能力,加之数据量的积累和计算力的进步,成为机器视觉的热点研究方向。


那么,如何理解一张图片?根据后续任务的需要,有三个主要的层次。


图像理解的三个层次


一是分类(Classification),即是将图像结构化为某一类别的信息,用事先确定好的类别(string)或实例ID来描述图片。这一任务是最简单、最基础的图像理解任务,也是深度学习模型最先取得突破和实现大规模应用的任务。其中,ImageNet是最权威的评测集,每年的ILSVRC催生了大量的优秀深度网络结构,为其他任务提供了基础。在应用领域,人脸、场景的识别等都可以归为分类任务。


二是检测(Detection)。分类任务关心整体,给出的是整张图片的内容描述,而检测则关注特定的物体目标,要求同时获得这一目标的类别信息和位置信息。相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因而,检测模型的输出是一个列表,列表的每一项使用一个数据组给出检出目标的类别和位置(常用矩形检测框的坐标表示)。


三是分割(Segmentation)。分割包括语义分割(semantic segmentation)和实例分割(instance segmentation),前者是对前背景分离的拓展,要求分离开具有不同语义的图像部分,而后者是检测任务的拓展,要求描述出目标的轮廓(相比检测框更为精细)。分割是对图像的像素级描述,它赋予每个像素类别(实例)意义,适用于理解要求较高的场景,如无人驾驶中对道路和非道路的分割。


本系列文章关注的领域是目标检测,即图像理解的中层次。


目标检测入门(一):目标检测经典模型回顾


本文结构


两阶段(2-stage)检测模型


两阶段模型因其对图片的两阶段处理得名,也称为基于区域(Region-based)的方法,我们选取R-CNN系列工作作为这一类型的代表。


R-CNN: R-CNN系列的开山之作


Rich feature hierarchies for accurate object detection and semantic segmentation

论文链接: 

https://arxiv.org/abs/1311.2524


本文的两大贡献:


1)CNN可用于基于区域的定位和分割物体;

2)监督训练样本数紧缺时,在额外的数据上预训练的模型经过fine-tuning可以取得很好的效果。


第一个贡献影响了之后几乎所有2-stage方法,而第二个贡献中用分类任务(Imagenet)中训练好的模型作为基网络,在检测问题上fine-tuning的做法也在之后的工作中一直沿用。


传统的计算机视觉方法常用精心设计的手工特征(如SIFT, HOG)描述图像,而深度学习的方法则倡导习得特征,从图像分类任务的经验来看,CNN网络自动习得的特征取得的效果已经超出了手工设计的特征。本篇在局部区域应用卷积网络,以发挥卷积网络学习高质量特征的能力。


R-CNN网络结构


R-CNN将检测抽象为两个过程,一是基于图片提出若干可能包含物体的区域(即图片的局部裁剪,被称为Region Proposal),文中使用的是Selective Search算法;二是在提出的这些区域上运行当时表现最好的分类网络(AlexNet),得到每个区域内物体的类别。


另外,文章中的两个做法值得注意。


IoU的计算


一是数据的准备。输入CNN前,我们需要根据Ground Truth对提出的Region Proposal进行标记,这里使用的指标是IoU(Intersection over Union,交并比)。IoU计算了两个区域之交的面积跟它们之并的比,描述了两个区域的重合程度。


文章中特别提到,IoU阈值的选择对结果影响显著,这里要谈两个threshold,一个用来识别正样本(如跟ground truth的IoU大于0.5),另一个用来标记负样本(即背景类,如IoU小于0.1),而介于两者之间的则为难例(Hard Negatives),若标为正类,则包含了过多的背景信息,反之又包含了要检测物体的特征,因而这些Proposal便被忽略掉。


另一点是位置坐标的回归(Bounding-Box Regression),这一过程是Region Proposal向Ground Truth调整,实现时加入了log/exp变换来使损失保持在合理的量级上,可以看做一种标准化(Normalization)操作。


小结


R-CNN的想法直接明了,即将检测任务转化为区域上的分类任务,是深度学习方法在检测任务上的试水。模型本身存在的问题也很多,如需要训练三个不同的模型(proposal, classification, regression)、重复计算过多导致的性能问题等。尽管如此,这篇论文的很多做法仍然广泛地影响着检测任务上的深度模型革命,后续的很多工作也都是针对改进这一工作而展开,此篇可以称得上"The First Paper"。


Fast R-CNN: 共享卷积运算


Fast R-CNN

论文链接:

https://arxiv.org/abs/1504.08083


文章指出R-CNN耗时的原因是CNN是在每一个Proposal上单独进行的,没有共享计算,便提出将基础网络在图片整体上运行完毕后,再传入R-CNN子网络,共享了大部分计算,故有Fast之名。


Fast R-CNN网络结构


上图是Fast R-CNN的架构。图片经过feature extractor得到feature map, 同时在原图上运行Selective Search算法并将RoI(Region of Interset,实为坐标组,可与Region Proposal混用)映射到到feature map上,再对每个RoI进行RoI Pooling操作便得到等长的feature vector,将这些得到的feature vector进行正负样本的整理(保持一定的正负样本比例),分batch传入并行的R-CNN子网络,同时进行分类和回归,并将两者的损失统一起来。


RoI Pooling图示,来源:https://blog.deepsense.ai/region-of-interest-pooling-explained/


RoI Pooling 是对输入R-CNN子网络的数据进行准备的关键操作。我们得到的区域常常有不同的大小,在映射到feature map上之后,会得到不同大小的特征张量。RoI Pooling先将RoI等分成目标个数的网格,再在每个网格上进行max pooling,就得到等长的RoI feature vector。


文章最后的讨论也有一定的借鉴意义:


  • multi-loss traing相比单独训练classification确有提升

  • multi-scale相比single-scale精度略有提升,但带来的时间开销更大。一定程度上说明CNN结构可以内在地学习尺度不变性

  • 在更多的数据(VOC)上训练后,精度是有进一步提升的

  • Softmax分类器比"one vs rest"型的SVM表现略好,引入了类间的竞争

  • 更多的Proposal并不一定带来精度的提升


小结


Fast R-CNN的这一结构正是检测任务主流2-stage方法所采用的元结构的雏形。


文章将Proposal, Feature Extractor, Object Classification&Localization统一在一个整体的结构中,并通过共享卷积计算提高特征利用效率,是最有贡献的地方。


Faster R-CNN: 两阶段模型的深度化


Faster R-CNN: Towards Real Time Object Detection with Region Proposal Networks

论文链接:

https://arxiv.org/abs/1506.01497


Faster R-CNN是2-stage方法的奠基性工作,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。粗略的讲,Faster R-CNN = RPN + Fast R-CNN,跟RCNN共享卷积计算的特性使得RPN引入的计算量很小,使得Faster R-CNN可以在单个GPU上以5fps的速度运行,而在精度方面达到SOTA(State of the Art,当前最佳)。


本文的主要贡献是提出Regional Proposal Networks,替代之前的SS算法。RPN网络将Proposal这一任务建模为二分类(是否为物体)的问题。


Faster R-CNN网络结构


第一步是在一个滑动窗口上生成不同大小和长宽比例的anchor box(如上图右边部分),取定IoU的阈值,按Ground Truth标定这些anchor box的正负。于是,传入RPN网络的样本数据被整理为anchor box(坐标)和每个anchor box是否有物体(二分类标签)。


RPN网络将每个样本映射为一个概率值和四个坐标值,概率值反应这个anchor box有物体的概率,四个坐标值用于回归定义物体的位置。最后将二分类和坐标回归的损失统一起来,作为RPN网络的目标训练。


由RPN得到Region Proposal在根据概率值筛选后经过类似的标记过程,被传入R-CNN子网络,进行多分类和坐标回归,同样用多任务损失将二者的损失联合。


小结


Faster R-CNN的成功之处在于用RPN网络完成了检测任务的"深度化"。使用滑动窗口生成anchor box的思想也在后来的工作中越来越多地被采用(YOLO v2等)。这项工作奠定了"RPN+RCNN"的两阶段方法元结构,影响了大部分后续工作。


单阶段(1-stage)检测模型


单阶段模型没有中间的区域检出过程,直接从图片获得预测结果,也被成为Region-free方法。


YOLO


You Only Look Once: Unified, Real-Time Object Detection

论文链接:

https://arxiv.org/abs/1506.02640


YOLO是单阶段方法的开山之作。它将检测任务表述成一个统一的、端到端的回归问题,并且以只处理一次图片同时得到位置和分类而得名。


YOLO的主要优点:


  • 快。

  • 全局处理使得背景错误相对少,相比基于局部(区域)的方法, 如Fast RCNN。

  • 泛化性能好,在艺术作品上做检测时,YOLO表现比Fast R-CNN好。


YOLO网络结构


YOLO的工作流程如下:


1.准备数据:将图片缩放,划分为等分的网格,每个网格按跟Ground Truth的IoU分配到所要预测的样本。


2.卷积网络:由GoogLeNet更改而来,每个网格对每个类别预测一个条件概率值,并在网格基础上生成B个box,每个box预测五个回归值,四个表征位置,第五个表征这个box含有物体(注意不是某一类物体)的概率和位置的准确程度(由IoU表示)。测试时,分数如下计算:



等式左边第一项由网格预测,后两项由每个box预测,以条件概率的方式得到每个box含有不同类别物体的分数。 因而,卷积网络共输出的预测值个数为S×S×(B×5+C),其中S为网格数,B为每个网格生成box个数,C为类别数。


3.后处理:使用NMS(Non-Maximum Suppression,非极大抑制)过滤得到最后的预测框


损失函数的设计


YOLO的损失函数分解,来源:https://zhuanlan.zhihu.com/p/24916786


损失函数被分为三部分:坐标误差、物体误差、类别误差。为了平衡类别不均衡和大小物体等带来的影响,损失函数中添加了权重并将长宽取根号。


小结


YOLO提出了单阶段的新思路,相比两阶段方法,其速度优势明显,实时的特性令人印象深刻。但YOLO本身也存在一些问题,如划分网格较为粗糙,每个网格生成的box个数等限制了对小尺度物体和相近物体的检测。


SSD: Single Shot Multibox Detector


SSD: Single Shot Multibox Detector

论文链接:

https://arxiv.org/abs/1512.02325


SSD网络结构


SSD相比YOLO有以下突出的特点:


  • 多尺度的feature map:基于VGG的不同卷积段,输出feature map到回归器中。这一点试图提升小物体的检测精度。

  • 更多的anchor box,每个网格点生成不同大小和长宽比例的box,并将类别预测概率基于box预测(YOLO是在网格上),得到的输出值个数为(C+4)×k×m×n,其中C为类别数,k为box个数,m×n为feature map的大小。


小结


SSD是单阶段模型早期的集大成者,达到跟接近两阶段模型精度的同时,拥有比两阶段模型快一个数量级的速度。后续的单阶段模型工作大多基于SSD改进展开。


检测模型基本特点


最后,我们对检测模型的基本特征做一个简单的归纳。


两阶段检测模型Pipeline,来源:https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/


检测模型整体上由基础网络(Backbone Network)和检测头部(Detection Head)构成。前者作为特征提取器,给出图像不同大小、不同抽象层次的表示;后者则依据这些表示和监督信息学习类别和位置关联。检测头部负责的类别预测和位置回归两个任务常常是并行进行的,构成多任务的损失进行联合训练。


检测模型头部并行的分支,来源同上


相比单阶段,两阶段检测模型通常含有一个串行的头部结构,即完成前背景分类和回归后,把中间结果作为RCNN头部的输入再进行一次多分类和位置回归。这种设计带来了一些优点:


  • 对检测任务的解构,先进行前背景的分类,再进行物体的分类,这种解构使得监督信息在不同阶段对网络参数的学习进行指导

  • RPN网络为RCNN网络提供良好的先验,并有机会整理样本的比例,减轻RCNN网络的学习负担


这种设计的缺点也很明显:中间结果常常带来空间开销,而串行的方式也使得推断速度无法跟单阶段相比;级联的位置回归则会导致RCNN部分的重复计算(如两个RoI有重叠)。


另一方面,单阶段模型只有一次类别预测和位置回归,卷积运算的共享程度更高,拥有更快的速度和更小的内存占用。读者将会在接下来的文章中看到,两种类型的模型也在互相吸收彼此的优点,这也使得两者的界限更为模糊。


目标检测入门(二):模型的评测与训练技巧


文章结构



检测模型的评测指标


目标检测模型本源上可以用统计推断的框架描述,我们关注其犯第一类错误和第二类错误的概率,通常用准确率和召回率来描述。准确率描述了模型有多准,即在预测为正例的结果中,有多少是真正例;召回率则描述了模型有多全,即在为真的样本中,有多少被我们的模型预测为正例。不同的任务,对两类错误有不同的偏好,常常在某一类错误不多于一定阈值的情况下,努力减少另一类错误。在检测中,mAP(mean Average Precision)作为一个统一的指标将这两种错误兼顾考虑。


具体地,对于每张图片,检测模型输出多个预测框(常常远超真实框的个数),我们使用IoU(Intersection Over Union,交并比)来标记预测框是否为预测正确。标记完成后,随着预测框的增多,召回率总会提升,在不同的召回率水平下对准确率做平均,即得到AP,最后再对所有类别按其所占比例做平均,即得到mAP。


在较早的Pascal VOC数据集上,常采用固定的一个IoU阈值(如0.5, 0.75)来计算mAP,现阶段较为权威的MS COCO数据集上,对不同的IoU阈值(0.5-0.95,0.05为步长)分别计算AP,再综合平均,并且给出了不同大小物体分别的AP表现,对定位准确的模型给予奖励并全面地展现不同大小物体上检测算法的性能,更为科学合理。


在实践中,我们不仅关注检测模型的精度,还关注其运行的速度,常常用FPS(Frame Per Second,每秒帧率)来表示检测模型能够在指定硬件上每秒处理图片的张数。通常来讲,在单块GPU上,两阶段方法的FPS一般在个位数,而单阶段方法可以达到数十。现在检测模型运行的平台并不统一,实践中也不能部署较为昂贵的GPU进行推断。事实上,很多文章并没有严谨讨论其提出模型的速度表现(加了较多的trick以使精度达到SOTA),另外,考虑到目前移动端专用芯片的发展速度和研究进展,速度方面的指标可能较难形成统一的参考标准,需要谨慎看待文章中汇报的测试结果。


标准评测数据集


Pascal VOC(Pascal Visual Object Classes)


链接:http://host.robots.ox.ac.uk/pascal/VOC/


自2005年起每年举办一次比赛,最开始只有4类,到2007年扩充为20个类,共有两个常用的版本:2007和2012。学术界常用5k的trainval2007和16k的trainval2012作为训练集(07+12),test2007作为测试集,用10k的trainval2007+test2007和和16k的trainval2012作为训练集(07++12),test2012作为测试集,分别汇报结果。


Pascal VOC对早期检测工作起到了重要的推动作用,目前提升的空间相对有限,权威评测集的交接棒也逐渐传给了下面要介绍的COCO。


MS COCO(Common Objects in COntext-http://cocodataset.org)


检测任务在COCO数据集上的进展


COCO数据集收集了大量包含常见物体的日常场景图片,并提供像素级的实例标注以更精确地评估检测和分割算法的效果,致力于推动场景理解的研究进展。依托这一数据集,每年举办一次比赛,现已涵盖检测、分割、关键点识别、注释等机器视觉的中心任务,是继ImageNet Chanllenge以来最有影响力的学术竞赛之一。


iconic与non-iconic图片对比


相比ImageNet,COCO更加偏好目标与其场景共同出现的图片,即non-iconic images。这样的图片能够反映视觉上的语义,更符合图像理解的任务要求。而相对的iconic images则更适合浅语义的图像分类等任务。


COCO的检测任务共含有80个类,在2014年发布的数据规模分train/val/test分别为80k/40k/40k,学术界较为通用的划分是使用train和35k的val子集作为训练集(trainval35k),使用剩余的val作为测试集(minival),同时向官方的evaluation server提交结果(test-dev)。除此之外,COCO官方也保留一部分test数据作为比赛的评测集。


COCO数据集分布


在分布方面,COCO的每个类含有更多实例,分布也较为均衡(上图a),每张图片包含更多类和更多的实例(上图b和c,均为直方图,每张图片平均分别含3.3个类和7.7个实例),相比Pascal VOC,COCO还含有更多的小物体(下图,横轴是物体占图片的比例)。


COCO数据集物体大小分布


如本文第一节所述,COCO提供的评测标准更为精细化,提供的API不仅包含了可视化、评测数据的功能,还有对模型的错误来源分析脚本,能够更清晰地展现算法的不足之处。COCO所建立的这些标准也逐渐被学术界认可,成为通用的评测标准。您可以在这里找到目前检测任务的LeaderBoard。


错误来源分解,详见http://cocodataset.org/#detections-eval


Cityscapes(https://www.cityscapes-dataset.com)


Cityscapes数据示例


Cityscapes数据集专注于现代城市道路场景的理解,提供了30个类的像素级标注,是自动驾驶方向较为权威的评测集。


检测模型中的Bells and wisthles


本节介绍常见的提升检测模型性能的技巧,它们常作为trick在比赛中应用。其实,这样的名称有失公允,部分工作反映了作者对检测模型有启发意义的观察,有些具有成为检测模型标准组件的潜力(如果在早期的工作中即被应用则可能成为通用做法)。读者将它们都看作学术界对解决这一问题的努力即可。对研究者,诚实地报告所引用的其他工作并添加有说服力的消融实验(ablation expriments)以支撑自己工作的原创性和贡献之处,则是值得倡导的行为。


Data augmentation 数据增强


数据增强是增加深度模型鲁棒性和泛化性能的常用手段,随机翻转、随机裁剪、添加噪声等也被引入到检测任务的训练中来,其信念是通过数据的一般性来迫使模型学习到诸如对称不变性、旋转不变性等更一般的表示。通常需要注意标注的相应变换,并且会大幅增加训练的时间。个人认为数据(监督信息)的适时传入可能是更有潜力的方向。


Multi-scale Training/Testing 多尺度训练/测试


输入图片的尺寸对检测模型的性能影响相当明显,事实上,多尺度是提升精度最明显的技巧之一。在基础网络部分常常会生成比原图小数十倍的特征图,导致小物体的特征描述不容易被检测网络捕捉。通过输入更大、更多尺寸的图片进行训练,能够在一定程度上提高检测模型对物体大小的鲁棒性,仅在测试阶段引入多尺度,也可享受大尺寸和多尺寸带来的增益。


multi-scale training/testing最早见于[1],训练时,预先定义几个固定的尺度,每个epoch随机选择一个尺度进行训练。测试时,生成几个不同尺度的feature map,对每个Region Proposal,在不同的feature map上也有不同的尺度,我们选择最接近某一固定尺寸(即检测头部的输入尺寸)的Region Proposal作为后续的输入。在[2]中,选择单一尺度的方式被Maxout(element-wise max,逐元素取最大)取代:随机选两个相邻尺度,经过Pooling后使用Maxout进行合并,如下图所示。


使用Maxout合并feature vector


近期的工作如FPN等已经尝试在不同尺度的特征图上进行检测,但多尺度训练/测试仍作为一种提升性能的有效技巧被应用在MS COCO等比赛中。


Global Context 全局语境


这一技巧在ResNet的工作[3]中提出,做法是把整张图片作为一个RoI,对其进行RoI Pooling并将得到的feature vector拼接于每个RoI的feature vector上,作为一种辅助信息传入之后的R-CNN子网络。目前,也有把相邻尺度上的RoI互相作为context共同传入的做法。


Box Refinement/Voting 预测框微调/投票法


微调法和投票法由工作[4]提出,前者也被称为Iterative Localization。微调法最初是在SS算法得到的Region Proposal基础上用检测头部进行多次迭代得到一系列box,在ResNet的工作中,作者将输入R-CNN子网络的Region Proposal和R-CNN子网络得到的预测框共同进行NMS(见下面小节)后处理,最后,把跟NMS筛选所得预测框的IoU超过一定阈值的预测框进行按其分数加权的平均,得到最后的预测结果。投票法可以理解为以顶尖筛选出一流,再用一流的结果进行加权投票决策。


OHEM 在线难例挖掘


OHEM(Online Hard negative Example Mining,在线难例挖掘)见于[5]。两阶段检测模型中,提出的RoI Proposal在输入R-CNN子网络前,我们有机会对正负样本(背景类和前景类)的比例进行调整。通常,背景类的RoI Proposal个数要远远多于前景类,Fast R-CNN的处理方式是随机对两种样本进行上采样和下采样,以使每一batch的正负样本比例保持在1:3,这一做法缓解了类别比例不均衡的问题,是两阶段方法相比单阶段方法具有优势的地方,也被后来的大多数工作沿用。


OHEM图解


但在OHEM的工作中,作者提出用R-CNN子网络对RoI Proposal预测的分数来决定每个batch选用的样本,这样,输入R-CNN子网络的RoI Proposal总为其表现不好的样本,提高了监督学习的效率。实际操作中,维护两个完全相同的R-CNN子网络,其中一个只进行前向传播来为RoI Proposal的选择提供指导,另一个则为正常的R-CNN,参与损失的计算并更新权重,并且将权重复制到前者以使两个分支权重同步。


OHEM以额外的R-CNN子网络的开销来改善RoI Proposal的质量,更有效地利用数据的监督信息,成为两阶段模型提升性能的常用部件之一。


Soft NMS 软化非极大抑制


NMS后处理图示


NMS(Non-Maximum Suppression,非极大抑制)是检测模型的标准后处理操作,用于去除重合度(IoU)较高的预测框,只保留预测分数最高的预测框作为检测输出。Soft NMS由[6]提出。在传统的NMS中,跟最高预测分数预测框重合度超出一定阈值的预测框会被直接舍弃,作者认为这样不利于相邻物体的检测。提出的改进方法是根据IoU将预测框的预测分数进行惩罚,最后再按分数过滤。配合Deformable Convnets(将在之后的文章介绍),Soft NMS在MS COCO上取得了当时最佳的表现。算法改进如下:


Soft-NMS算法改进


上图中的f即为软化函数,通常取线性或高斯函数,后者效果稍好一些。当然,在享受这一增益的同时,Soft-NMS也引入了一些超参,对不同的数据集需要试探以确定最佳配置。


RoIAlign RoI对齐


RoIAlign是Mask R-CNN([7])的工作中提出的,针对的问题是RoI在进行Pooling时有不同程度的取整,这影响了实例分割中mask损失的计算。文章采用双线性插值的方法将RoI的表示精细化,并带来了较为明显的性能提升。这一技巧也被后来的一些工作(如light-head R-CNN)沿用。


拾遗


除去上面所列的技巧外,还有一些做法也值得注意:


  • 更好的先验(YOLOv2):使用聚类方法统计数据中box标注的大小和长宽比,以更好的设置anchor box的生成配置

  • 更好的pre-train模型:检测模型的基础网络通常使用ImageNet(通常是ImageNet-1k)上训练好的模型进行初始化,使用更大的数据集(ImageNet-5k)预训练基础网络对精度的提升亦有帮助

  • 超参数的调整:部分工作也发现如NMS中IoU阈值的调整(从0.3到0.5)也有利于精度的提升,但这一方面尚无最佳配置参照


最后,集成(Ensemble)作为通用的手段也被应用在比赛中。


总结


本篇文章里,我们介绍了检测模型常用的标准评测数据集和训练模型的技巧,上述内容在溯源和表述方面的不实之处也请读者评论指出。从下一篇开始,我们将介绍检测领域较新的趋势,请持续关注。


Reference

[1]: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

[2]: Object Detection Networks on Convolutional Feature Maps

[3]: Deep Residual Learning for Image Classification

[4]: Object Detection via a Multi-region & Semantic Segmentatio-aware CNN Model

[5]: Training Region-based Object Detectors with Online Hard Example Mining

[6]: Improving Object Detection With One Line of Code

[7]: Mask R-CNN


插播:格灵深瞳2018春季校招现已启动!点击查看格灵深瞳空中宣讲会


招聘

新一年,AI科技大本营的目标更加明确,有更多的想法需要落地,不过目前对于营长来说是“现实跟不上灵魂的脚步”,因为缺人~~


所以,AI科技大本营要壮大队伍了,现招聘AI记者和资深编译,有意者请将简历投至:gulei@csdn.net,期待你的加入!


如果你暂时不能加入营长的队伍,也欢迎与营长分享你的精彩文章,投稿邮箱:suiling@csdn.net


AI科技大本营读者群(计算机视觉、机器学习、深度学习、NLP、Python、AI硬件、AI+金融、AI+PM方向)正在招募中,关注AI科技大本营微信公众号,后台回复:读者群,联系营长,添加营长请备注姓名,研究方向。




☟☟☟点击 | 阅读原文 | 查看更多精彩内

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/852680
推荐阅读
相关标签
  

闽ICP备14008679号