当前位置:   article > 正文

python 图像iou_如何通过python实现IOU计算代码实例

iouv

如何通过python实现IOU计算代码实例,车位,测量,区域,面积,车辆

如何通过python实现IOU计算代码实例

易采站长站,站长之家为您整理了如何通过python实现IOU计算代码实例的相关内容。

Intersection over Union(IOU)是一种测量在特定数据集中检测相应物体准确度的一个标准。IoU是一个简单的测量标准,只要是在输出中得出一个预测范围(bounding boxes)的任务都可以用IoU来进行测量。

IoU分数是对象类别分割问题的标准性能度量 [1] 。 给定一组图像,IoU测量给出了在该组图像中存在的对象的预测区域和地面实况区域之间的相似性

计算两个矩形的交并比,通常在检测任务里面可以作为一个检测指标。你的预测bbox和groundtruth之间的差异,就可以通过IOU来体现。

代码如下

#!/usr/bin/env python

# encoding: utf-8

import numpy as np

'''

函数说明:计算两个框的重叠面积

输入:

rec1 第一个框xmin ymin xmax ymax

rec2 第二个框xmin ymin xmax ymax

输出:

iouv 重叠比例 0 没有

'''

def compute_iou(rec1, rec2):

# computing area of each rectangles

S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) # H1*W1

S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # H2*W2

# computing the sum_area

sum_area = S_rec1 + S_rec2 #总面积

# find the each edge of intersect rectangle

left_line = max(rec1[0], rec2[0])

right_line = min(rec1[2], rec2[2])

top_line = max(rec1[1], rec2[1])

bottom_line = min(rec1[3], rec2[3])

# judge if there is an intersect

if left_line >= right_line or top_line >= bottom_line:

#print("没有重合区域")

return 0

else:

#print("有重合区域")

intersect = (right_line - left_line) * (bottom_line - top_line)

iouv=(float(intersect) / float(sum_area - intersect))*1.0

return iouv

'''

函数说明:获取两组匹配结果

输入:

rectA 车位

rectB 车辆

threod 重叠面积最小数值界限 默认0.6

输出:

CarUse 一维数组保存是否占用 1 占用 0 没有

'''

def TestCarUse(rectA,rectB,threod=0.6,debug=0):

#threod=0.8#设定最小值

ALength=len(rectA)

BLength=len(rectB)

#创建保存匹配结果的矩阵

recIOU=np.zeros((ALength,BLength),dtype=float,order='C')

#用于记录车位能够使否占用

CarUse=np.zeros((1,ALength),dtype=int,order='C')

for i in range(0,ALength):

for j in range(0,BLength):

iou = compute_iou(rectA[i], rectB[j])

recIOU[i][j]=format(iou,'.3f')

if iou>=threod:

CarUse[0,i]=1 #有一个超过匹配认为车位i被占用

if debug==1:

print('----匹配矩阵----')

print(recIOU)

'''

print('----车位占用情况----')

for i in range(0,ALength):

msg='车位'+str(i)+"-"+str(CarUse[0][i])

print(msg)

'''

return CarUse

if __name__=='__main__':

#A代表车位

rectA1 = (30, 10, 70, 20)

rectA2 = (70, 10, 80, 20)

rectA =[rectA1,rectA2]

#B代表检测车辆

rectB1 = (20, 10, 35, 20)

rectB2 = (30, 15, 70, 25)

rectB3 = (70, 10, 80, 20)

rectB =[rectB1,rectB2,rectB3]

#获取车位占用情况 rectA车位 rectB车辆 0.6占面积最小比

CarUse=TestCarUse(rectA,rectB,0.6,1)

print('----车位占用情况----')

for i in range(0,len(CarUse)+1):

msg='车位'+str(i)+"-"+str(CarUse[0][i])

print(msg)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持易采站长站。以上就是关于对如何通过python实现IOU计算代码实例的详细介绍。欢迎大家对如何通过python实现IOU计算代码实例内容提出宝贵意见

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/114108
推荐阅读
相关标签
  

闽ICP备14008679号