当前位置:   article > 正文

计算机科学与语音和语言处理,语音与语言处理:自然语言处理、计算语言学和语音识别导论:第2版:英文(全面系统地介绍了计算机自然语言处理)...

语音与语言处理:自然语言处理、计算语言学和语音识别导论练习答案

Summary of Contents

Foreword 23

Preface 25

About the Authors 31

1 Introduction 35

I Words

2 Regular Expressions and Automata 51

3 Words and Transducers    79

4 N-Grams 117

5 Part-of-Speech Tagging    157

6 Hidden Markov and Maximum Entropy Models 207

7 Phonetics 249

8 Speech Synthesis 283

9 Automatic Speech Recognition 319

10 Speech Recognition: Advanced Topics 369

11 Computational Phonology    395

12 Formal Grammars of English   419

13 Syntactic Parsing 461

14 Statistical Parsing 493

15 Features and Uni?cation    523

16 Language and Complexity    563

IV Semantics and Pragmatics

17 The Representation ofMeaning  579

18 Computational Semantics    617

19 Lexical Semantics  645

20 Computational Lexical Semantics  671

21 Computational Discourse    715

V Applications

22 Information Extraction    759

23 Question Answering and Summarization 799

24 Dialogue and Conversational Agents 847

25 Machine Translation    895

Bibliography 945

Author Index 995

Subject Index 1007

Contents

Foreword 23

Preface 25

About the Authors 31

1 Introduction 35

1.1 Knowledge in Speech and Language Processing   36

1.2 Ambiguity 38

1.3 Models andAlgorithms 39

1.4 Language, Thought, and Understanding    40

1.5 TheState of theArt 42

1.6 SomeBriefHistory 43

1.6.1 Foundational Insights: 1940s and 1950s   43

1.6.2 The Two Camps: 1957–1970    44

1.6.3 Four Paradigms: 1970–1983    45

1.6.4 Empiricism and Finite-State Models Redux: 1983–1993   46

1.6.5 The Field Comes Together: 1994–1999  46

1.6.6 The Rise of Machine Learning: 2000–2008   46

1.6.7 On Multiple Discoveries   47

1.6.8 A Final Brief Note on Psychology    48

1.7 Summary   48

Bibliographical and Historical Notes   49

I Words

2 Regular Expressions and Automata  51

2.1 RegularExpressions   51

2.1.1 Basic Regular Expression Patterns    52

2.1.2 Disjunction, Grouping, and Precedence  55

2.1.3 ASimpleExample  56

2.1.4 A More Complex Example  57

2.1.5 AdvancedOperators   58

2.1.6 Regular Expression Substitution, Memory, and ELIZA   59

2.2 Finite-StateAutomata   60

2.2.1 Use of an FSA to Recognize Sheeptalk   61

2.2.2 Formal Languages  64

2.2.3 Another Example   65

2.2.4 Non-Deterministic FSAs . 66

2.2.5 Use of an NFSA to Accept Strings   67

2.2.6 Recognition as Search 69

2.2.7 Relation of Deterministic and Non-Deterministic Automata   72

Foreword   23

Preface   25

About the Authors  31

1 Introduction   35

1.1 Knowledge in Speech and Language Processing  36

1.2 Ambiguity   38

1.3 Models andAlgorithms   39

1.4 Language, Thought, and Understanding    40

1.5 TheState of theArt . 42

1.6 SomeBriefHistory . 43

1.6.1 Foundational Insights: 1940s and 1950s 43

1.6.2 The Two Camps: 1957–1970    44

1.6.3 Four Paradigms: 1970–1983    45

1.6.4 Empiricism and Finite-State Models Redux: 1983–1993 46

1.6.5 The Field Comes Together: 1994–1999 46

1.6.6 The Rise of Machine Learning: 2000–2008 46

1.6.7 On Multiple Discoveries 47

1.6.8 A Final Brief Note on Psychology    48

1.7 Summary   48

Bibliographical and Historical Notes 49

I Words

2 Regular Expressions and Automata 51

2.1 RegularExpressions 51

2.1.1 Basic Regular Expression Patterns    52

2.1.2 Disjunction, Grouping, and Precedence  55

2.1.3 ASimpleExample  56

2.1.4 A More Complex Example   57

2.1.5 AdvancedOperators   58

2.1.6 Regular Expression Substitution, Memory, and ELIZA  59

2.2 Finite-StateAutomata  60

2.2.1 Use of an FSA to Recognize Sheeptalk  61

2.2.2 Formal Languages  64

2.2.3 Another Example   65

2.2.4 Non-Deterministic FSAs   66

2.2.5 Use of an NFSA to Accept Strings    67

2.2.6 Recognition as Search  69

2.2.7 Relation of Deterministic and Non-Deterministic Automata  72

2.3 Regular Languages and FSAs  72

2.4 Summary   75

Bibliographical and Historical Notes 76

Exercises 76

3 Words and Transducers 79

3.1 Survey of (Mostly) English Morphology   81

3.1.1 In?ectional Morphology   82

3.1.2 Derivational Morphology  84

3.1.3 Cliticization   85

3.1.4 Non-Concatenative Morphology    85

3.1.5 Agreement   86

3.2 Finite-State Morphological Parsing  86

3.3 Construction of a Finite-State Lexicon    88

3.4 Finite-StateTransducers   91

3.4.1 Sequential Transducers and Determinism   93

3.5 FSTs for Morphological Parsing   94

3.6 Transducers and Orthographic Rules    96

3.7 The Combination of an FST Lexicon and Rules   99

3.8 Lexicon-Free FSTs: The Porter Stemmer    102

3.9 Word and Sentence Tokenization  102

3.9.1 Segmentation in Chinese  104

3.10 Detection and Correction of Spelling Errors   106

3.11 MinimumEditDistance   107

3.12 Human Morphological Processing   111

3.13 Summary   113

Bibliographical and Historical Notes   114

Exercises 115

4 N-Grams   117

4.1 WordCounting inCorpora  119

4.2 Simple (Unsmoothed) N-Grams  120

4.3 Training andTestSets   125

4.3.1 N-Gram Sensitivity to the Training Corpus  126

4.3.2 Unknown Words: Open Versus Closed Vocabulary Tasks   129

4.4 Evaluating N-Grams: Perplexity   129

4.5 Smoothing   131

4.5.1 LaplaceSmoothing   132

4.5.2 Good-Turing Discounting  135

4.5.3 Some Advanced Issues in Good-Turing Estimation   136

4.6 Interpolation   138

4.7 Backoff   139

4.7.1 Advanced: Details of Computing Katz Backoff α and P 141

4.8 Practical Issues: Toolkits and Data Formats    142

4.9 Advanced Issues in Language Modeling    143

4.9.1 Advanced Smoothing Methods: Kneser-Ney Smoothing   143

4.9.2 Class-Based N-Grams  145

4.9.3 Language Model Adaptation and Web Use  146

4.9.4 Using Longer-Distance Information: A Brief Summary   146

4.10 Advanced: Information Theory Background   148

4.10.1 Cross-Entropy for Comparing Models    150

4.11 Advanced: The Entropy of English and Entropy Rate Constancy 152

4.12 Summary   153

Bibliographical and Historical Notes 154

Exercises 155

5 Part-of-Speech Tagging   157

5.1 (Mostly) English Word Classes  158

5.2 Tagsets forEnglish   164

5.3 Part-of-Speech Tagging   167

5.4 Rule-Based Part-of-Speech Tagging  169

5.5 HMM Part-of-Speech Tagging  173

5.5.1 Computing the Most Likely Tag Sequence: An Example  176

5.5.2 Formalizing Hidden Markov Model Taggers  178

5.5.3 Using the Viterbi Algorithm for HMM Tagging   179

5.5.4 Extending the HMM Algorithm to Trigrams   183

5.6 Transformation-Based Tagging   185

5.6.1 How TBL Rules Are Applied    186

5.6.2 How TBL Rules Are Learned    186

5.7 Evaluation and Error Analysis   187

5.7.1 ErrorAnalysis  190

5.8 Advanced Issues in Part-of-Speech Tagging    191

5.8.1 Practical Issues: Tag Indeterminacy and Tokenization   191

5.8.2 Unknown Words . 192

5.8.3 Part-of-Speech Tagging for Other Languages  194

5.8.4 Tagger Combination 197

5.9 Advanced: The Noisy Channel Model for Spelling   197

5.9.1 Contextual Spelling Error Correction    201

5.10 Summary   202

Bibliographical and Historical Notes 203

Exercises 205

6 Hidden Markov and Maximum Entropy Models 207

6.1 MarkovChains   208

6.2 TheHiddenMarkovModel   210

6.3 Likelihood Computation: The Forward Algorithm   213

6.4 Decoding: The Viterbi Algorithm  218

6.5 HMM Training: The Forward-Backward Algorithm   220

6.6 Maximum Entropy Models: Background   227

6.6.1 LinearRegression   228

6.6.2 Logistic Regression 231

6.6.3 Logistic Regression: Classi?cation   233

6.6.4 Advanced: Learning in Logistic Regression   234

6.7 Maximum Entropy Modeling   235

6.7.1 Why We Call It Maximum Entropy    239

6.8 Maximum Entropy Markov Models 241

6.8.1 Decoding and Learning in MEMMs    244

6.9 Summary   245

Bibliographical and Historical Notes 246

Exercises 247

II Speech

7 Phonetics   249

7.1 Speech Sounds and Phonetic Transcription  250

7.2 Articulatory Phonetics   251

7.2.1 TheVocalOrgans   252

7.2.2 Consonants: Place of Articulation   254

7.2.3 Consonants: Manner of Articulation    255

7.2.4 Vowels 256

7.2.5 Syllables 257

7.3 Phonological Categories and Pronunciation Variation 259

7.3.1 Phonetic Features . 261

7.3.2 Predicting Phonetic Variation    . 262

7.3.3 Factors In?uencing Phonetic Variation    263

7.4 Acoustic Phonetics and Signals 264

7.4.1 Waves   264

7.4.2 Speech Sound Waves   265

7.4.3 Frequency and Amplitude; Pitch and Loudness   267

7.4.4 Interpretation of Phones from a Waveform  270

7.4.5 Spectra and the Frequency Domain   270

7.4.6 The Source-Filter Model   274

7.5 Phonetic Resources   275

7.6 Advanced: Articulatory and Gestural Phonology   278

7.7 Summary   279

Bibliographical and Historical Notes  280

Exercises   281

8 Speech Synthesis  283

8.1 TextNormalization   285

8.1.1 Sentence Tokenization   285

8.1.2 Non-Standard Words   286

8.1.3 Homograph Disambiguation   290

8.2 Phonetic Analysis   291

8.2.1 Dictionary Lookup   291

8.2.2 Names   292

8.2.3 Grapheme-to-Phoneme Conversion    293

8.3 ProsodicAnalysis   296

8.3.1 ProsodicStructure  296

8.3.2 Prosodic Prominence   297

8.3.3 Tune   299

8.3.4 More Sophisticated Models: ToBI   300

8.3.5 Computing Duration from Prosodic Labels  302

8.3.6 Computing F0 from Prosodic Labels   303

8.3.7 Final Result of Text Analysis: Internal Representation  305

8.4 Diphone Waveform Synthesis   306

8.4.1 Steps for Building a Diphone Database 306

8.4.2 Diphone Concatenation and TD-PSOLA for Prosody  308

8.5 Unit Selection (Waveform) Synthesis  310

8.6 Evaluation   314

Bibliographical and Historical Notes   315

Exercises   318

9 Automatic Speech Recognition   319

9.1 Speech Recognition Architecture   321

9.2 The Hidden Markov Model Applied to Speech   325

9.3 Feature Extraction: MFCC Vectors  329

9.3.1 Preemphasis  330

9.3.2 Windowing   330

9.3.3 Discrete Fourier Transform   332

9.3.4 Mel Filter Bank and Log   333

9.3.5 The Cepstrum: Inverse Discrete Fourier Transform  334

9.3.6 Deltas andEnergy  336

9.3.7 Summary:MFCC   336

9.4 Acoustic Likelihood Computation  337

9.4.1 Vector Quantization   337

9.4.2 GaussianPDFs   340

9.4.3 Probabilities, Log-Probabilities, and Distance Functions  347

9.5 The Lexicon and Language Model   348

9.6 Search andDecoding   348

9.7 EmbeddedTraining   358

9.8 Evaluation: Word Error Rate 362

9.9 Summary   364

Bibliographical and Historical Notes   365

Exercises   367

10 Speech Recognition: Advanced Topics  369

10.1 Multipass Decoding: N-Best Lists and Lattices    369

10.2 A? (“Stack”)Decoding  375

10.3 Context-Dependent Acoustic Models: Triphones   379

10.4 DiscriminativeTraining  383

10.4.1 Maximum Mutual Information Estimation  384

10.4.2 Acoustic Models Based on Posterior Classi?ers 385

10.5 ModelingVariation   386

10.5.1 Environmental Variation and Noise   386

10.5.2 Speaker Variation and Speaker Adaptation   387

10.5.3 Pronunciation Modeling: Variation Due to Genre 388

10.6 Metadata: Boundaries, Punctuation, and Dis?uencies   390

10.7 Speech Recognition by Humans  392

10.8 Summary   393

Bibliographical and Historical Notes   393

Exercises   394

11 Computational Phonology   395

11.1 Finite-State Phonology   395

11.2 Advanced Finite-State Phonology   399

11.2.1 Harmony   399

11.2.2 Templatic Morphology  400

11.3 Computational Optimality Theory   401

11.3.1 Finite-State Transducer Models of Optimality Theory   403

11.3.2 Stochastic Models of Optimality Theory  404

11.4 Syllabi?cation   406

11.5 Learning Phonology and Morphology   409

11.5.1 Learning Phonological Rules   409

11.5.2 Learning Morphology 411

11.5.3 Learning in Optimality Theory   414

11.6 Summary 415

Bibliographical and Historical Notes   415

Exercises 417

III Syntax

12 Formal Grammars of English 419

12.1 Constituency 420

12.2 Context-FreeGrammars 421

12.2.1 Formal De?nition of Context-Free Grammar 425

12.3 Some Grammar Rules for English   426

12.3.1 Sentence-Level Constructions   426

12.3.2 Clauses and Sentences   428

12.3.3 The Noun Phrase  428

12.3.4 Agreement   432

12.3.5 The Verb Phrase and Subcategorization  434

12.3.6 Auxiliaries   436

12.3.7 Coordination  437

12.4 Treebanks 438

12.4.1 Example: The Penn Treebank Project    438

12.4.2 Treebanks as Grammars   440

12.4.3 Treebank Searching  442

12.4.4 Heads and Head Finding  443

12.5 Grammar Equivalence and Normal Form  446

12.6 Finite-State and Context-Free Grammars   447

12.7 DependencyGrammars 448

12.7.1 The Relationship Between Dependencies and Heads 449

12.7.2 Categorial Grammar 451

12.8 Spoken Language Syntax   451

12.8.1 Dis?uencies andRepair   452

12.8.2 Treebanks for Spoken Language   453

12.9 Grammars and Human Processing   454

12.10 Summary 455

Bibliographical and Historical Notes  456

Exercises   458

13 Syntactic Parsing   461

13.1 Parsing asSearch   462

13.1.1 Top-DownParsing   463

13.1.2 Bottom-UpParsing  464

13.1.3 Comparing Top-Down and Bottom-Up Parsing 465

13.2 Ambiguity 466

13.3 Search in the Face of Ambiguity . 468

13.4 Dynamic Programming Parsing Methods    469

13.4.1 CKYParsing 470

13.4.2 The Earley Algorithm 477

13.4.3 ChartParsing 482

13.5 PartialParsing . 484

13.5.1 Finite-State Rule-Based Chunking    486

13.5.2 Machine Learning-Based Approaches to Chunking 486

13.5.3 Chunking-System Evaluations    . 489

13.6 Summary  490

Bibliographical and Historical Notes   491

Exercises   492

14 Statistical Parsing   493

14.1 Probabilistic Context-Free Grammars   494

14.1.1 PCFGs for Disambiguation   495

14.1.2 PCFGs for Language Modeling   497

14.2 Probabilistic CKY Parsing of PCFGs   498

14.3 Ways to Learn PCFG Rule Probabilities   501

14.4 ProblemswithPCFGs  502

14.4.1 Independence Assumptions Miss Structural Dependencies BetweenRules  502

14.4.2 Lack of Sensitivity to Lexical Dependencies  503

14.5 Improving PCFGs by Splitting Non-Terminals   505

14.6 Probabilistic Lexicalized CFGs  507

14.6.1 The Collins Parser  509

14.6.2 Advanced: Further Details of the Collins Parser   511

14.7 EvaluatingParsers  513

14.8 Advanced: Discriminative Reranking   515

14.9 Advanced: Parser-Based Language Modeling    516

14.10 HumanParsing  517

14.11 Summary  519

Bibliographical and Historical Notes   520

Exercises 522

15 Features and Uni?cation  523

15.1 FeatureStructures  524

15.2 Uni?cation of Feature Structures   526

15.3 Feature Structures in the Grammar  531

15.3.1 Agreement  532

15.3.2 HeadFeatures  534

15.3.3 Subcategorization  535

15.3.4 Long-Distance Dependencies    540

15.4 Implementation of Uni?cation  541

15.4.1 Uni?cation Data Structures   541

15.4.2 The Uni?cationAlgorithm   543

15.5 Parsing with Uni?cation Constraints   547

15.5.1 Integration of Uni?cation into an Earley Parser  548

15.5.2 Uni?cation-Based Parsing   553

15.6 Types and Inheritance   555

15.6.1 Advanced: Extensions to Typing   558

15.6.2 Other Extensions to Uni?cation   559

15.7 Summary   559

Bibliographical and Historical Notes  560

Exercises 561

16 Language and Complexity   563

16.1 TheChomskyHierarchy   564

16.2 Ways to Tell if a Language Isn’t Regular    566

16.2.1 The Pumping Lemma 567

16.2.2 Proofs that Various Natural Languages Are Not Regular  569

16.3 Is Natural Language Context Free?  571

16.4 Complexity and Human Processing   573

16.5 Summary 576

Bibliographical and Historical Notes 577

Exercises 578

17 The Representation of Meaning 579

17.1 Computational Desiderata for Representations   581

17.1.1 Veri?ability 581

17.1.2 Unambiguous Representations  582

17.1.3 Canonical Form   583

17.1.4 Inference and Variables  584

17.1.5 Expressiveness  585

17.2 Model-Theoretic Semantics  586

17.3 First-OrderLogic   589

17.3.1 Basic Elements of First-Order Logic    589

17.3.2 Variables and Quanti?ers . 591

17.3.3 LambdaNotation . 593

17.3.4 The Semantics of First-Order Logic  594

17.3.5 Inference   595

17.4 Event and State Representations  597

17.4.1 RepresentingTime  600

17.4.2 Aspect   603

17.5 DescriptionLogics   606

17.6 Embodied and Situated Approaches to Meaning   612

17.7 Summary   614

Bibliographical and Historical Notes   614

Exercises 616

18 Computational Semantics  617

18.1 Syntax-Driven Semantic Analysis   617

18.2 Semantic Augmentations to Syntactic Rules   619

18.3 Quanti?er Scope Ambiguity and Underspeci?cation   626

18.3.1 Store and Retrieve Approaches    626

18.3.2 Constraint-Based Approaches    629

18.4 Uni?cation-Based Approaches to Semantic Analysis   632

18.5 Integration of Semantics into the Earley Parser   638

18.6 Idioms and Compositionality   639

18.7 Summary   641

Bibliographical and Historical Notes  641

Exercises   643

19 Lexical Semantics  645

19.1 WordSenses   646

19.2 Relations Between Senses   649

19.2.1 Synonymy and Antonymy   649

19.2.2 Hyponymy   650

19.2.3 SemanticFields   651

19.3 WordNet: A Database of Lexical Relations    651

19.4 EventParticipants  653

19.4.1 ThematicRoles   654

19.4.2 Diathesis Alternations  656

19.4.3 Problems with Thematic Roles    657

19.4.4 The Proposition Bank  658

19.4.5 FrameNet   659

19.4.6 Selectional Restrictions   661

19.5 Primitive Decomposition   663

19.6 Advanced: Metaphor 665

19.7 Summary   666

Bibliographical and Historical Notes   667

Exercises   668

20 Computational Lexical Semantics   671

20.1 Word Sense Disambiguation: Overview    672

20.2 Supervised Word Sense Disambiguation    673

20.2.1 Feature Extraction for Supervised Learning  674

20.2.2 Naive Bayes and Decision List Classi?ers   675

20.3 WSD Evaluation, Baselines, and Ceilings   678

20.4 WSD: Dictionary and Thesaurus Methods   680

20.4.1 The Lesk Algorithm   680

20.4.2 Selectional Restrictions and Selectional Preferences   682

20.5 Minimally Supervised WSD: Bootstrapping    684

20.6 Word Similarity: Thesaurus Methods    686

20.7 Word Similarity: Distributional Methods    692

20.7.1 De?ning a Word’s Co-Occurrence Vectors   693

20.7.2 Measuring Association with Context   695

20.7.3 De?ning Similarity Between Two Vectors  697

20.7.4 Evaluating Distributional Word Similarity   701

20.8 Hyponymy and Other Word Relations   701

20.9 SemanticRoleLabeling   704

20.10 Advanced: Unsupervised Sense Disambiguation  708

20.11 Summary 709

Bibliographical and Historical Notes 710

Exercises 713

21 Computational Discourse  715

21.1 DiscourseSegmentation  718

21.1.1 Unsupervised Discourse Segmentation  718

21.1.2 Supervised Discourse Segmentation   720

21.1.3 Discourse Segmentation Evaluation   722

21.2 TextCoherence  723

21.2.1 Rhetorical Structure Theory   724

21.2.2 Automatic Coherence Assignment   726

21.3 ReferenceResolution   729

21.4 ReferencePhenomena   732

21.4.1 Five Types of Referring Expressions    732

21.4.2 Information Status   734

21.5 Features for Pronominal Anaphora Resolution    735

21.5.1 Features for Filtering Potential Referents  735

21.5.2 Preferences in Pronoun Interpretation   736

21.6 Three Algorithms for Anaphora Resolution   738

21.6.1 Pronominal Anaphora Baseline: The Hobbs Algorithm   738

21.6.2 A Centering Algorithm for Anaphora Resolution   740

21.6.3 A Log-Linear Model for Pronominal Anaphora Resolution   742

21.6.4 Features for Pronominal Anaphora Resolution  743

21.7 Coreference Resolution   744

21.8 Evaluation of Coreference Resolution   746

21.9 Advanced: Inference-Based Coherence Resolution   747

21.10 Psycholinguistic Studies of Reference   752

21.11 Summary  753

Bibliographical and Historical Notes   754

Exercises  756

V Applications

22 Information Extraction   759

22.1 Named Entity Recognition   761

22.1.1 Ambiguity in Named Entity Recognition   763

22.1.2 NER as Sequence Labeling   763

22.1.3 Evaluation of Named Entity Recognition  766

22.1.4 Practical NER Architectures    768

22.2 Relation Detection and Classi?cation    768

22.2.1 Supervised Learning Approaches to Relation Analysis 769

22.2.2 Lightly Supervised Approaches to Relation Analysis . 772

22.2.3 Evaluation of Relation Analysis Systems . 776

22.3 Temporal and Event Processing 777

22.3.1 Temporal Expression Recognition    777

22.3.2 Temporal Normalization   780

22.3.3 Event Detection and Analysis    783

22.3.4 TimeBank  784

22.4 Template Filling  786

22.4.1 Statistical Approaches to Template-Filling   786

22.4.2 Finite-State Template-Filling Systems    788

22.5 Advanced: Biomedical Information Extraction    791

22.5.1 Biological Named Entity Recognition    792

22.5.2 Gene Normalization  793

22.5.3 Biological Roles and Relations   794

22.6 Summary   796

Bibliographical and Historical Notes  796

Exercises   797

23 Question Answering and Summarization  799

23.1 InformationRetrieval   801

23.1.1 The Vector Space Model   802

23.1.2 TermWeighting   804

23.1.3 Term Selection and Creation   806

23.1.4 Evaluation of Information-Retrieval Systems 806

23.1.5 Homonymy, Polysemy, and Synonymy   810

23.1.6 Ways to Improve User Queries   810

23.2 Factoid Question Answering  812

23.2.1 Question Processing   813

23.2.2 PassageRetrieval  815

23.2.3 AnswerProcessing  817

23.2.4 Evaluation of Factoid Answers    821

23.3 Summarization   821

23.4 Single-Document Summarization   824

23.4.1 Unsupervised Content Selection    824

23.4.2 Unsupervised Summarization Based on Rhetorical Parsing   826

23.4.3 Supervised Content Selection    828

23.4.4 Sentence Simpli?cation   829

23.5 Multi-Document Summarization  830

23.5.1 Content Selection in Multi-Document Summarization  831

23.5.2 Information Ordering in Multi-Document Summarization   832

23.6 Focused Summarization and Question Answering   835

23.7 Summarization Evaluation   839

23.8 Summary   841

Bibliographical and Historical Notes   842

Exercises 844

24 Dialogue and Conversational Agents  847

24.1 Properties of Human Conversations  849

24.1.1 Turns and Turn-Taking  849

24.1.2 Language as Action: Speech Acts    851

24.1.3 Language as Joint Action: Grounding   852

24.1.4 Conversational Structure   854

24.1.5 Conversational Implicature  855

24.2 Basic Dialogue Systems   857

24.2.1 ASR Component  857

24.2.2 NLU Component   858

24.2.3 Generation and TTS Components   861

24.2.4 Dialogue Manager   863

24.2.5 Dealing with Errors: Con?rmation and Rejection 867

24.3 VoiceXML 868

24.4 Dialogue System Design and Evaluation    872

24.4.1 Designing Dialogue Systems    872

24.4.2 Evaluating Dialogue Systems   872

24.5 Information-State and Dialogue Acts   874

24.5.1 Using Dialogue Acts   876

24.5.2 Interpreting Dialogue Acts  877

24.5.3 Detecting Correction Acts  880

24.5.4 Generating Dialogue Acts: Con?rmation and Rejection  881

24.6 Markov Decision Process Architecture    882

24.7 Advanced: Plan-Based Dialogue Agents    886

24.7.1 Plan-Inferential Interpretation and Production  887

24.7.2 The Intentional Structure of Dialogue   889

24.8 Summary  891

Bibliographical and Historical Notes   892

Exercises   894

25 Machine Translation  895

25.1 Why Machine Translation Is Hard   898

25.1.1 Typology   898

25.1.2 Other Structural Divergences    900

25.1.3 LexicalDivergences   901

25.2 Classical MT and the Vauquois Triangle 903

25.2.1 Direct Translation   904

25.2.2 Transfer   906

25.2.3 Combined Direct and Transfer Approaches in Classic MT  908

25.2.4 The Interlingua Idea: Using Meaning    909

25.3 StatisticalMT   910

25.4 P(F E): The Phrase-Based Translation Model   913

25.5 Alignment inMT   915

25.5.1 IBMModel 1   916

25.5.2 HMMAlignment   919

25.6 Training Alignment Models  921

25.6.1 EM for Training Alignment Models   922

25.7 Symmetrizing Alignments for Phrase-Based MT  924

25.8 Decoding for Phrase-Based Statistical MT    926

25.9 MTEvaluation   930

25.9.1 Using Human Raters   930

25.9.2 Automatic Evaluation: BLEU    931

25.10 Advanced: Syntactic Models for MT    934

25.11 Advanced: IBM Model 3 and Fertility   935

25.11.1 Training forModel 3  939

25.12 Advanced: Log-Linear Models for MT    939

25.13 Summary  940

Bibliographical and Historical Notes   941

Exercises 943

Bibliography   945

Author Index  995

Subject Index   1007

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/116372
推荐阅读
相关标签
  

闽ICP备14008679号