当前位置:   article > 正文

Kafka:Consumer暂停与恢复从Partition拉取消息_paused consumer resumed by kafka due to rebalance;

paused consumer resumed by kafka due to rebalance; consumer paused again, so

测试代码

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.kaven</groupId>
    <artifactId>kafka</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>3.0.0</version>
        </dependency>
    </dependencies>
</project>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

创建Topic

package com.kaven.kafka.admin;

import org.apache.kafka.clients.admin.*;
import org.apache.kafka.common.KafkaFuture;

import java.util.Collections;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;

public class Admin {

    // 基于Kafka服务地址与请求超时时间来创建AdminClient实例
    private static final AdminClient adminClient = Admin.getAdminClient(
            "192.168.1.9:9092,192.168.1.9:9093,192.168.1.9:9094",
            "40000");

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        Admin admin = new Admin();
        // 创建Topic,Topic名称为topic1,分区数为1,复制因子为1
        admin.createTopic("topic1", 1, (short) 1);
        // 创建Topic,Topic名称为topic2,分区数为2,复制因子为1
        admin.createTopic("topic2", 2, (short) 1);
        // 创建Topic,Topic名称为topic3,分区数为2,复制因子为1
        admin.createTopic("topic3", 2, (short) 1);
        Thread.sleep(10000);
    }

    public static AdminClient getAdminClient(String address, String requestTimeoutMS) {
        Properties properties = new Properties();
        properties.setProperty(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, address);
        properties.setProperty(AdminClientConfig.REQUEST_TIMEOUT_MS_CONFIG, requestTimeoutMS);
        return AdminClient.create(properties);
    }

    public void createTopic(String name, int numPartitions, short replicationFactor) throws InterruptedException {
        CountDownLatch latch = new CountDownLatch(1);
        CreateTopicsResult topics = adminClient.createTopics(
                Collections.singleton(new NewTopic(name, numPartitions, replicationFactor))
        );
        Map<String, KafkaFuture<Void>> values = topics.values();
        values.forEach((name__, future) -> {
            future.whenComplete((a, throwable) -> {
                if(throwable != null) {
                    System.out.println(throwable.getMessage());
                }
                System.out.println(name__);
                latch.countDown();
            });
        });
        latch.await();
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

Producer发布消息:

package com.kaven.kafka.producer;

import org.apache.kafka.clients.producer.*;
import java.util.Properties;
import java.util.concurrent.ExecutionException;

public class ProducerTest {

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        send("topic1");
        send("topic2");
        send("topic3");
    }

    public static void send(String name) throws ExecutionException, InterruptedException {
        Producer<String, String> producer = ProducerTest.createProducer();
        for (int i = 0; i < 7; i++) {
            ProducerRecord<String, String> producerRecord = new ProducerRecord<>(
                    name,
                    "key-" + i,
                    "value-" + i
            );
            // 异步发送并回调
            producer.send(producerRecord, (metadata, exception) -> {
                if(exception == null) {
                    System.out.printf("topic: %s, partition: %s, offset: %s\n", name, metadata.partition(), metadata.offset());
                }
                else {
                    exception.printStackTrace();
                }
            });
        }
        // 要关闭Producer实例
        producer.close();
    }

    public static Producer<String, String> createProducer() {
        // Producer的配置
        Properties properties = new Properties();
        // 服务地址
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.1.9:9092,192.168.1.9:9093,192.168.1.9:9094");
        // KEY的序列化器类
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        // VALUE的序列化器类
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");

        return new KafkaProducer<>(properties);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

暂停从Partition拉取消息

Consumer订阅程序:

package com.kaven.kafka.consumer;

import org.apache.kafka.clients.consumer.*;

import java.time.Duration;
import java.util.*;

public class ConsumerTest {

    public static void main(String[] args) throws InterruptedException {
        pausePartition(Arrays.asList("topic1", "topic2", "topic3"));
    }

    public static void pausePartition(List<String> topicList) throws InterruptedException {
        KafkaConsumer<String, String> consumer = createConsumer();
        consumer.subscribe(topicList);
        
        while (true) {
            // 拉取消息
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(10000));
            records.partitions().forEach((partition) -> {
                // 从该分区拉取的消息
                List<ConsumerRecord<String, String>> recordsWithPartition = records.records(partition);
                recordsWithPartition.forEach((record) -> {
                    System.out.printf("topic: %s, partition: %s, offset: %s, key: %s, value: %s\n",
                            record.topic(), record.partition(), record.offset(), record.key(), record.value());
                });
                // 暂停拉取分区1的消息
                if(partition.partition() == 1) {
                    consumer.pause(Collections.singleton(partition));
                }
            });
        }
    }

    public static KafkaConsumer<String, String> createConsumer() {
        // Consumer的配置
        Properties properties = new Properties();
        // 服务地址
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.1.9:9092,192.168.1.9:9093,192.168.1.9:9094");
        // 组ID,用于标识此消费者所属的消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "kaven-test");
        // 开启offset自动提交
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
        // 消费者offset自动提交到Kafka的频率(以毫秒为单位)
        properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
        // KEY的反序列化器类
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        // VALUE的反序列化器类
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

        return new KafkaConsumer<>(properties);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

暂停拉取分区1的消息:

                // 暂停拉取分区1的消息
                if(partition.partition() == 1) {
                    consumer.pause(Collections.singleton(partition));
                }
  • 1
  • 2
  • 3
  • 4

由于是先拉取消息后再暂停拉取分区1的消息,因此开始会拉取分区1的消息,之后就只会拉取分区0(测试的Topic最多只有两个分区)的信息。

先创建Topic,然后运行Consumer订阅程序,再使用Producer发布两次消息,之后Consumer就可以订阅到消息了,输出如下所示:

// 第一次发布的消息
topic: topic1, partition: 0, offset: 147, key: key-0, value: value-0
topic: topic1, partition: 0, offset: 148, key: key-1, value: value-1
topic: topic1, partition: 0, offset: 149, key: key-2, value: value-2
topic: topic1, partition: 0, offset: 150, key: key-3, value: value-3
topic: topic1, partition: 0, offset: 151, key: key-4, value: value-4
topic: topic1, partition: 0, offset: 152, key: key-5, value: value-5
topic: topic1, partition: 0, offset: 153, key: key-6, value: value-6
topic: topic2, partition: 0, offset: 84, key: key-1, value: value-1
topic: topic2, partition: 0, offset: 85, key: key-2, value: value-2
topic: topic2, partition: 0, offset: 86, key: key-5, value: value-5
topic: topic2, partition: 0, offset: 87, key: key-6, value: value-6
topic: topic2, partition: 1, offset: 63, key: key-0, value: value-0
topic: topic2, partition: 1, offset: 64, key: key-3, value: value-3
topic: topic2, partition: 1, offset: 65, key: key-4, value: value-4
topic: topic3, partition: 0, offset: 84, key: key-1, value: value-1
topic: topic3, partition: 0, offset: 85, key: key-2, value: value-2
topic: topic3, partition: 0, offset: 86, key: key-5, value: value-5
topic: topic3, partition: 0, offset: 87, key: key-6, value: value-6
topic: topic3, partition: 1, offset: 63, key: key-0, value: value-0
topic: topic3, partition: 1, offset: 64, key: key-3, value: value-3
topic: topic3, partition: 1, offset: 65, key: key-4, value: value-4

// 第二次发布的消息
topic: topic1, partition: 0, offset: 154, key: key-0, value: value-0
topic: topic1, partition: 0, offset: 155, key: key-1, value: value-1
topic: topic1, partition: 0, offset: 156, key: key-2, value: value-2
topic: topic1, partition: 0, offset: 157, key: key-3, value: value-3
topic: topic1, partition: 0, offset: 158, key: key-4, value: value-4
topic: topic1, partition: 0, offset: 159, key: key-5, value: value-5
topic: topic1, partition: 0, offset: 160, key: key-6, value: value-6
topic: topic2, partition: 0, offset: 88, key: key-1, value: value-1
topic: topic2, partition: 0, offset: 89, key: key-2, value: value-2
topic: topic2, partition: 0, offset: 90, key: key-5, value: value-5
topic: topic2, partition: 0, offset: 91, key: key-6, value: value-6
topic: topic3, partition: 0, offset: 88, key: key-1, value: value-1
topic: topic3, partition: 0, offset: 89, key: key-2, value: value-2
topic: topic3, partition: 0, offset: 90, key: key-5, value: value-5
topic: topic3, partition: 0, offset: 91, key: key-6, value: value-6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

输出符合预期。

恢复从Partition拉取消息

修改Consumer订阅程序:

    public static void pausePartition(List<String> topicList) throws InterruptedException {
        KafkaConsumer<String, String> consumer = createConsumer();
        consumer.subscribe(topicList);
        // 恢复被暂停拉取消息的分区
        resume(consumer);
        while (true) {
            // 拉取消息
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(10000));
            records.partitions().forEach((partition) -> {
                // 从该分区拉取的消息
                List<ConsumerRecord<String, String>> recordsWithPartition = records.records(partition);
                recordsWithPartition.forEach((record) -> {
                    System.out.printf("topic: %s, partition: %s, offset: %s, key: %s, value: %s\n",
                            record.topic(), record.partition(), record.offset(), record.key(), record.value());
                });
            });
        }
    }

    // 用于恢复被暂停拉取消息的分区
    public static void resume(KafkaConsumer<String, String> consumer) {
        consumer.resume(consumer.paused());
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

下面这行代码会恢复所有被暂停拉取的分区。

consumer.resume(consumer.paused());
  • 1

运行Consumer订阅程序,Producer不发布消息,而Consumer也可以订阅到消息,输出如下所示(可能需要等一会):

topic: topic3, partition: 1, offset: 66, key: key-0, value: value-0
topic: topic3, partition: 1, offset: 67, key: key-3, value: value-3
topic: topic3, partition: 1, offset: 68, key: key-4, value: value-4
topic: topic2, partition: 1, offset: 66, key: key-0, value: value-0
topic: topic2, partition: 1, offset: 67, key: key-3, value: value-3
topic: topic2, partition: 1, offset: 68, key: key-4, value: value-4
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

很显然这些消息是之前被暂停拉取的分区中的消息,现在恢复拉取了,消息就又可以被消费了,因此,可以基于暂停与恢复从Partition拉取消息来实现Kafka的限流逻辑。Consumer暂停与恢复从Partition拉取消息就介绍到这里,如果博主有说错的地方或者大家有不同的见解,欢迎大家评论补充。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/125459
推荐阅读
相关标签