从文件中读取数据
在TensorFlow中进行模型训练时,在官网给出的三种读取方式,中最好的文件读取方式就是将利用队列进行文件读取,而且步骤有两步:
- 把样本数据写入TFRecords二进制文件
- 从队列中读取
TFRecords二进制文件,能够更好的利用内存,更方便的移动和复制,并且不需要单独的标记文件
下面官网给出的,对mnist文件进行操作的code,具体代码请参考:tensorflow-master\tensorflow\examples\how_tos\reading_data\convert_to_records.py
(https://www.sogou.com/link?url=DSOYnZeCC_pKZzihDKzFgzQoUkRGi7SFyAyslJcA_SlXxobSKiNyJA..)
生成TFRecords文件
定义主函数,给训练、验证、测试数据集做转换:
- def main(unused_argv):
- # Get the data.
- data_sets = mnist.read_data_sets(FLAGS.directory,
- dtype=tf.uint8,
- reshape=False,
- validation_size=FLAGS.validation_size)
-
- # Convert to Examples and write the result to TFRecords.
- convert_to(data_sets.train, 'train')
- convert_to(data_sets.validation, 'validation')
- convert_to(data_sets.test, 'test')
-
转换函数的作用convert_to的主要功能是,将数据填入到协议缓冲区,并化为一个字符串,然后写入到TFRecords文件。
-
- def convert_to(data_set, name):
- """Converts a dataset to tfrecords."""
- images = data_set.images
- labels = data_set.labels
- num_examples = data_set.num_examples
-
- if images.shape[0] != num_examples:
- raise ValueError('Images size %d does not match label size %d.' %
- (images.shape[0], num_examples))
- rows = images.shape[1] # 28
- cols = images.shape[2] # 28
- depth = images.shape[3] # 1. 是黑白图像,所以是单通道
-
- filename = os.path.join(FLAGS.directory, name + '.tfrecords')
- print('Writing', filename)
- writer = tf.python_io.TFRecordWriter(filename)
- for index in range(num_examples):
- image_raw = images[index].tostring()
-
- # 写入协议缓存区,height,width,depth,label编码成int64类型,image_raw 编码成二进制
- example = tf.train.Example(features=tf.train.Features(feature={
- 'height': _int64_feature(rows),
- 'width': _int64_feature(cols),
- 'depth': _int64_feature(depth),
- 'label': _int64_feature(int(labels[index])),
- 'image_raw': _bytes_feature(image_raw)}))
- writer.write(example.SerializeToString()) # 序列化为字符串
- writer.close()
-
编码函数如下:
- def _int64_feature(value):
- return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
-
-
- def _bytes_feature(value):
- return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
完整代码:
- import tensorflow as tf
- import os
- import argparse
- import sys
-
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
-
- #1.0 生成TFRecords 文件
- from tensorflow.contrib.learn.python.learn.datasets import mnist
-
- FLAGS = None
-
- # 编码函数如下:
- def _int64_feature(value):
- return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
-
-
- def _bytes_feature(value):
- return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
-
-
- def convert_to(data_set, name):
- """Converts a dataset to tfrecords."""
- images = data_set.images
- labels = data_set.labels
- num_examples = data_set.num_examples
-
- if images.shape[0] != num_examples:
- raise ValueError('Images size %d does not match label size %d.' %
- (images.shape[0], num_examples))
- rows = images.shape[1] # 28
- cols = images.shape[2] # 28
- depth = images.shape[3] # 1. 是黑白图像,所以是单通道
-
- filename = os.path.join(FLAGS.directory, name + '.tfrecords')
- print('Writing', filename)
- writer = tf.python_io.TFRecordWriter(filename)
- for index in range(num_examples):
- image_raw = images[index].tostring()
-
- # 写入协议缓存区,height,width,depth,label编码成int64类型,image_raw 编码成二进制
- example = tf.train.Example(features=tf.train.Features(feature={
- 'height': _int64_feature(rows),
- 'width': _int64_feature(cols),
- 'depth': _int64_feature(depth),
- 'label': _int64_feature(int(labels[index])),
- 'image_raw': _bytes_feature(image_raw)}))
- writer.write(example.SerializeToString()) # 序列化为字符串
- writer.close()
-
-
- def main(unused_argv):
- # Get the data.
- data_sets = mnist.read_data_sets(FLAGS.directory,
- dtype=tf.uint8,
- reshape=False,
- validation_size=FLAGS.validation_size)
-
- # Convert to Examples and write the result to TFRecords.
- convert_to(data_sets.train, 'train')
- convert_to(data_sets.validation, 'validation')
- convert_to(data_sets.test, 'test')
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument(
- '--directory',
- type=str,
- default='MNIST_data/',
- help='Directory to download data files and write the converted result'
- )
- parser.add_argument(
- '--validation_size',
- type=int,
- default=5000,
- help="""\
- Number of examples to separate from the training data for the validation
- set.\
- """
- )
- FLAGS, unparsed = parser.parse_known_args()
- tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
-
运行结束后,在/tmp/data下生成3个文件,即train.tfrecords,validation.tfrecords和test.tfrecords.
从队列中读取
读取TFRecords文件步骤
使用队列读取数TFRecords 文件 数据的步骤
- 创建张量,从二进制文件读取一个样本数据
- 创建张量,从二进制文件随机读取一个mini-batch
- 把每一批张量传入网络作为输入点
TensorFlow使用TFRecords文件训练样本的步骤
在生成文件名的序列中,设定epoch数量
训练时,设定为无穷循环
在读取数据时,如果捕捉到错误,终止
source code:tensorflow-master\tensorflow\examples\how_tos\reading_data\fully_connected_reader.py(1.2.1)
(https://blog.csdn.net/fontthrone/article/details/76728083 )
-
- import tensorflow as tf
- import os
-
- # from tensorflow.contrib.learn.python.learn.datasets import mnist
- # 注意上面的这个mnist 与 example 中的 mnist 是不同的,本文件中请使用下面的那个 mnist
-
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
- import argparse
- import os.path
- import sys
- import time
-
- from tensorflow.examples.tutorials.mnist import mnist
-
- # Basic model parameters as external flags.
- FLAGS = None
-
- # This part of the code is added by FontTian,which comes from the source code of tensorflow.examples.tutorials.mnist
- # The MNIST images are always 28x28 pixels.
- # IMAGE_SIZE = 28
- # IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE
-
- # Constants used for dealing with the files, matches convert_to_records.
- TRAIN_FILE = 'train.tfrecords'
- VALIDATION_FILE = 'validation.tfrecords'
-
-
- def read_and_decode(filename_queue):
- reader = tf.TFRecordReader()
- _, serialized_example = reader.read(filename_queue)
- features = tf.parse_single_example(
- serialized_example,
- # Defaults are not specified since both keys are required.
- # 必须写明faetures 中的 key 的名称
- features={
- 'image_raw': tf.FixedLenFeature([], tf.string),
- 'label': tf.FixedLenFeature([], tf.int64),
- })
-
- # Convert from a scalar string tensor (whose single string has
- # length mnist.IMAGE_PIXELS) to a uint8 tensor with shape
- # [mnist.IMAGE_PIXELS].
- # 将一个标量字符串张量(其单个字符串的长度是mnist.image像素) # 0 维的Tensor
- # 转换为一个带有形状mnist.图像像素的uint8张量。 # 一维的Tensor
- image = tf.decode_raw(features['image_raw'], tf.uint8)
- # print(tf.shape(image)) # Tensor("input/Shape:0", shape=(1,), dtype=int32)
-
- image.set_shape([mnist.IMAGE_PIXELS])
- # print(tf.shape(image)) # Tensor("input/Shape_1:0", shape=(1,), dtype=int32)
-
- # OPTIONAL: Could reshape into a 28x28 image and apply distortions
- # here. Since we are not applying any distortions in this
- # example, and the next step expects the image to be flattened
- # into a vector, we don't bother.
-
- # Convert from [0, 255] -> [-0.5, 0.5] floats.
- image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
- # print(tf.shape(image)) # Tensor("input/Shape_2:0", shape=(1,), dtype=int32)
-
- # Convert label from a scalar uint8 tensor to an int32 scalar.
- label = tf.cast(features['label'], tf.int32)
- # print(tf.shape(label)) # Tensor("input/Shape_3:0", shape=(0,), dtype=int32)
-
- return image, label
-
-
- # 使用 tf.train.shuffle_batch 将前面生成的样本随机化,获得一个最小批次的张量
- def inputs(train, batch_size, num_epochs):
- """Reads input data num_epochs times.
- Args:
- train: Selects between the training (True) and validation (False) data.
- batch_size: Number of examples per returned batch.
- num_epochs: Number of times to read the input data, or 0/None to
- train forever.
- Returns:
- A tuple (images, labels), where:
- * images is a float tensor with shape [batch_size, mnist.IMAGE_PIXELS]
- in the range [-0.5, 0.5].
- * labels is an int32 tensor with shape [batch_size] with the true label,
- a number in the range [0, mnist.NUM_CLASSES).
- Note that an tf.train.QueueRunner is added to the graph, which
- must be run using e.g. tf.train.start_queue_runners().
- 输入参数:
- train: Selects between the training (True) and validation (False) data.
- batch_size: 训练的每一批有多少个样本
- num_epochs: 读取输入数据的次数, or 0/None 表示永远训练下去
- 返回结果:
- A tuple (images, labels), where:
- * images is a float tensor with shape [batch_size, mnist.IMAGE_PIXELS]
- 范围: [-0.5, 0.5].
- * labels is an int32 tensor with shape [batch_size] with the true label,
- 范围: [0, mnist.NUM_CLASSES).
- 注意 : tf.train.QueueRunner 被添加进 graph, 它必须用 tf.train.start_queue_runners() 来启动线程.
- """
-
- if not num_epochs: num_epochs = None
- filename = os.path.join(FLAGS.train_dir,
- TRAIN_FILE if train else VALIDATION_FILE)
-
- with tf.name_scope('input'):
- # tf.train.string_input_producer 返回一个 QueueRunner,里面有一个 FIFQueue
- filename_queue = tf.train.string_input_producer(
- [filename], num_epochs=num_epochs)
- # 如果样本数据很大,可以分成若干文件,把文件名列表传入
-
- # Even when reading in multiple threads, share the filename queue.
- image, label = read_and_decode(filename_queue)
-
- # Shuffle the examples and collect them into batch_size batches.
- # (Internally uses a RandomShuffleQueue.)
- # We run this in two threads to avoid being a bottleneck.
- images, sparse_labels = tf.train.shuffle_batch(
- [image, label], batch_size=batch_size, num_threads=2,
- capacity=1000 + 3 * batch_size,
- # Ensures a minimum amount of shuffling of examples.
- # 留下一部分队列,来保证每次有足够的数据做随机打乱
- min_after_dequeue=1000)
-
- return images, sparse_labels
-
- def run_training():
- """Train MNIST for a number of steps."""
-
- # Tell TensorFlow that the model will be built into the default Graph.
- with tf.Graph().as_default():
- # Input images and labels.
- images, labels = inputs(train=True, batch_size=FLAGS.batch_size,
- num_epochs=FLAGS.num_epochs)
-
- # 构建一个从推理模型来预测数据的图
- logits = mnist.inference(images,
- FLAGS.hidden1,
- FLAGS.hidden2)
-
- # Add to the Graph the loss calculation.
- # 定义损失函数
- loss = mnist.loss(logits, labels)
-
- # 将模型添加到图操作中
- train_op = mnist.training(loss, FLAGS.learning_rate)
-
- # 初始化变量的操作
- init_op = tf.group(tf.global_variables_initializer(),
- tf.local_variables_initializer())
-
- # Create a session for running operations in the Graph.
- # 在图中创建一个用于运行操作的会话
- sess = tf.Session()
-
- # 初始化变量,注意:string_input_product 内部创建了一个epoch计数器
- sess.run(init_op)
-
- # Start input enqueue threads.
- coord = tf.train.Coordinator()
- threads = tf.train.start_queue_runners(sess=sess, coord=coord)
-
- try:
- step = 0
- while not coord.should_stop():
- start_time = time.time()
-
- # Run one step of the model. The return values are
- # the activations from the `train_op` (which is
- # discarded) and the `loss` op. To inspect the values
- # of your ops or variables, you may include them in
- # the list passed to sess.run() and the value tensors
- # will be returned in the tuple from the call.
- _, loss_value = sess.run([train_op, loss])
-
- duration = time.time() - start_time
-
- # Print an overview fairly often.
- if step % 100 == 0:
- print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value,
- duration))
- step += 1
- except tf.errors.OutOfRangeError:
- print('Done training for %d epochs, %d steps.' % (FLAGS.num_epochs, step))
- finally:
- # 通知其他线程关闭
- coord.request_stop()
-
- # Wait for threads to finish.
- coord.join(threads)
- sess.close()
-
- def main(_):
- run_training()
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument(
- '--learning_rate',
- type=float,
- default=0.01,
- help='Initial learning rate.'
- )
- parser.add_argument(
- '--num_epochs',
- type=int,
- default=2,
- help='Number of epochs to run trainer.'
- )
- parser.add_argument(
- '--hidden1',
- type=int,
- default=128,
- help='Number of units in hidden layer 1.'
- )
- parser.add_argument(
- '--hidden2',
- type=int,
- default=32,
- help='Number of units in hidden layer 2.'
- )
- parser.add_argument(
- '--batch_size',
- type=int,
- default=100,
- help='Batch size.'
- )
- parser.add_argument(
- '--train_dir',
- type=str,
- default='/tmp/data',
- help='Directory with the training data.'
- )
- FLAGS, unparsed = parser.parse_known_args()
- tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)