当前位置:   article > 正文

bp神经网络隐含层神经元个数_闲话神经网络

bp神经网络隐含层神经元个数

去年写的一篇神经网络杂文,把之前收集的神经网络点点滴滴串联起来,便于理解,如有不当,麻烦及时指出。

(1)神经网络发展历史

先看几张图:

3019ab597f406704f28d5244f0ff4799.png
2e02bcbdd1521bd6d250a5919a5ee40a.png

神经网络三次兴起:

  • 第一次,控制论时代,1958年,感知器诞生,能分类,但解决不了异或问题;
  • 第二次,联结主义时代,BP网络诞生,加非线性激活函数,解决了异或,但受限于理论不完善(局部最优,黑盒)+数据少+训练方法+计算能力,败于SVM与概率图;
  • 第三次,2006年,祖师爷Goeffrey Hinton坐了几十年冷板凳,琢磨出pre-training,DBN等,接着一发不可收拾。Yann LeCun将CNN发扬光大(将BP与CNN结合,推出第一个可用的Le-Net,深度学习入门者的hello world),Jürgen Schmidhuber 90年代发明的LSTM,沉寂多年后复活了,Yoshua Bengio开创了神经网络语言模型。加上大数据时代,GPU的发展等,诸多因素导致深度学习“大爆炸”。

注:这里不做过多介绍,详情参考我在雷锋网上的读书分享,「Deep Learning」读书系列分享(一)

(2)神经网络基础回顾

34948c18baaa3b0fd04147fe4be1fc7c.png

左边展示了一个生物学的神经元,右边展示了一个常用的数学模型。人工神经网络中的神经元设计受到生物神经元的启发。

总结要点:

  • 生物神经元(左图)中,树突将信号传递到细胞体,信号在细胞体中相加。如果和高于某个阈值,那么神经元将会激活,向其轴突输出一个峰值信号,注意是一个脉冲信号。
  • 数学计算模型(右图)中,将输入进行加权求和加上偏置,输入到激活函数(模拟生物中神经元)中,继续往后传递。
  • 注意:生物中神经元复杂得多,其一,输出是一个脉冲,而不是一个值,现在也有脉冲人工神经网络(号称第三代神经网络)。
89b0499a6958509e082a4fb27541963b.png

多个神经元组合起来,输入层,隐含层和输出层,形成神经网络。常见的是前馈神经网络,典型例子多层感知器,变种是循环神经网络(时间上共享)和卷积神经网络(空间上共享)等。当然,80-90年代,还有诞生过其他结构的网络,如反馈神经网络(输出与输入直接关联,如Elman网络和Hopfield网络),自组织神经网络(无监督,每次竞争,只更新一个神经元,参数和网络结构自适应),模糊神经网络径向基神经网络(跟早期的BP网络同步)等等,只是应用效果欠佳,淹没在时代潮流里,被人遗忘。

参考:神经网络用作分类器

(3)十万个为什么

神经网络从名不见经传到现在大红大紫,成了AI浪潮的主力。只要跟AI相关,基本都要扯上神经网络,从多层感知器MLP,到卷积神经网络CNN,循环神经网络RNN,再到自编码器AE,变分自编码VAE,生成对抗网络GAN,让人应接不暇。

身处信息爆炸时代的初学者,如果人云亦云,没有自己的思考,很容易陷入懵逼状态:

  • 神经网络到底是什么“神经”物种?神经元?人类大脑?
  1. 外行一听就觉得高端大气上档次,却又遥不可及,只得双手合十,顶礼膜拜,不可理解推敲焉,只好找个佛龛供起来,一方面自己有了信仰,心里不慌,另一方面又能“吓唬”别人,^_^。
本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/314249
推荐阅读
相关标签
  

闽ICP备14008679号