赞
踩
from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB def bayesian_demo(): ''' 朴素贝叶斯-文本分类 :return: ''' # 1. 获取数据 news = fetch_20newsgroups(subset='all') # 2. 划分数据集 x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.2) # 3. 特征工程 transfer = TfidfVectorizer() x_train = transfer.fit_transform(x_train) x_test = transfer.transform(x_test) # 4. 朴素贝叶斯算法预估器流程 estimator = MultinomialNB() estimator.fit(x_train, y_train) # 5. 模型评估 # 5.1 直接对比真实值、预测值 y_predict = estimator.predict(x_test) print('y_predic:\n', y_predict) print('直接对比真实值与预测值:\n', y_test == y_predict) # 5.2 计算准确率 score = estimator.score(x_test,y_test) print('准确率为:\n', score) if __name__ == '__main__': bayesian_demo()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。