当前位置:   article > 正文

MongoDB和AI 赋能行业应用:制造业和汽车行业

MongoDB和AI 赋能行业应用:制造业和汽车行业

请添加图片描述

欢迎阅读“MongoDB和AI 赋能行业应用”系列的第一篇。

本系列重点介绍AI应用于不同行业的关键用例,涵盖制造业和汽车行业、金融服务、零售、电信和媒体、保险以及医疗保健行业

随着人工智能(AI)在制造业和汽车行业的集成,传统的价值链正在经历一场革命性的转变。工业物联网(IoT)的引入使得企业能够从资产中收集和分析大量数据,这不仅提升了库存管理的智能化水平,还使得预测性维护成为可能,极大地提高了运营效率和可靠性。

库存管理

高效的供应链不仅可以确保准时向客户交付,而且还可以控制运营成本。为了实现这个目标,管理并优化库存水平、规划需求波动以及削减成本都是至关重要的。然而,高效的库存管理也给制造商带来了复杂的数据挑战,主要是在准确预测需求和优化库存水平方面。这些正是AI可以提供帮助的地方。

在这里插入图片描述

图1:使用MongoDB 进行的生成式人工智能(Gen AI)需求预测

AI算法可以分析复杂的数据集,从而预测客户对产品或组件未来的需求。需求预测的准确性越高,则越有利于维持最佳的库存水平。

预测需求量:客户需求是在快速变化的,而基于AI的时间序列预测可以帮助制造商快速适应,通过分析历史销售数据和市场趋势,确定最合适的库存水平,甚至避免人工错误。

制定需求管理模式:Gen AI可以帮助生成库存的综合数据和时令性调整的需求模式。

场景模拟:Gen AI可以帮助创建模拟供应链中断的场景。

MongoDB 可以让这些过程更轻松地实现。在仓库中,可以使用移动设备扫描库存,并将这些数据持久化到MongoDB中,并使用Device Sync同步到MongoDB(此方案已有MongoDB客户在使用,如Grainger)。一旦数据进入MongoDB,它就可以作为所有库存相关数据的中央存储库,同时为AI应用程序提供数据来源,从而消除数据孤岛,提高整体库存水平和动态的可见性。通过使用MongoDB 的Vector Search和Gen AI,制造商可以轻松地根据时令属性对产品进行分类,对具有相似时令需求模式的产品进行聚类,并为基础模型提供上下文,从而提高库存的综合数据生成的准确性。

预测性维护

如今,最基本的维护方法是被动的——让资产保持运行,直到实际发生故障为止。资产仅根据需要维护,因此很难进行预估。然而,预防性维护则根据保守的时间表更换系统或组件,从而防止常见故障的发生,但由于要在产品报废前频繁更换组件,因此预防性维护的实施成本很高。

在这里插入图片描述

图2:使用MongoDB进行基于音频的异常检测

AI可以让预测性维护更加高效,利用物联网传感器从机器上收集数据,并通过对数据进行训练来检测异常情况,从而有效地进行预测性维护。

异常预警:ML/AI 算法(如回归模型或决策树)在预处理数据上进行训练,部署在现场环境进行推理,并持续分析传感器数据。检测到异常情况时,会生成警报通知维护人员,这样就可以主动规划和执行维护操作,最大限度地减少停机时间,优化设备可靠性和性能。为了提高准确性,可以部署检索增强生成(RAG)架构来生成或管理数据预处理器,从而补充专业的数据科学知识,同时也可以让领域专家为大型语言模型提供正确的指令。

维修指导:一旦AI模型生成了维修警报,Gen AI就可以进一步提出维修策略建议,并将备件库存数据、维修预算和个人可用性考虑在内。最后,还可以将维修手册可以处理成向量,输入给智能问答机器人,从而指导技术人员进行实际维修。

MongoDB能够有效支撑以上场景。

一方面,MongoDB固有的灵活的文档模型支持开发者随时进行数据管理。由于机器健康预测模型不仅需要传感器数据,还需要维护历史和库存数据,因此文档模型非常适合对这些不同的数据源进行建模,从而支撑预测模型的训练。

另一方面,在物理产品的维护和支持过程中,必须提供产品信息和备件文档等信息,并方便支持人员访问,而MongoDB 提供的全文检索功能就可以帮助工作人员从集群中轻松检索信息。制造商可以使用MongoDB 探索简化机器诊断的方法,比如从机器中录制音频文件并转化为向量,通过向量检索获得类似的案例。还可以使用RAG实现一个智能问答机器人,技术人员通过与机器人对话获得最符合当下情况的维修指导,了解如何一步一步进行维修操作。

自动驾驶

随着车联网的兴起,汽车制造商不得不将其业务模式转变为软件优先型。汽车制造商开始利用联网汽车产生的数据创建更好的辅助驾驶系统,然而,要制造出比人类驾驶更安全的全自动驾驶汽车是非常难的。一些专家估计,实现 5 级自动驾驶的技术已开发了约 80%,但剩下的 20% 是非常难攻克的,需要大量时间来完善。

在这里插入图片描述

图3:MongoDB在自动驾驶中的应用

汽车应用中基于AI的图像和目标识别存在不确定性,但制造商仍然要利用雷达、激光雷达、摄像头和车辆遥测数据来不断进行模型训练。现代汽车就像一个数据中心,不断收集和处理来自车载传感器和摄像头的信息,从而产生大量的数据。强大的存储和分析能力对于管理这些数据至关重要,而实时分析对于作出即时决策以确保安全导航至关重要。MongoDB可以在这些挑战面前发挥重要作用。

●MongoDB能够处理大量非结构化数据,是同时容纳传感器读数、远程信息处理、地图和模型结果等各种数据类型的绝佳方式。

●MongoDB支持在运行时随时添加新字段,让开发人员能够轻松地为原始遥测数据添加上下文信息。

●MongoDB的Search提供了一个高性能搜索引擎,允许数据科学家迭代其感知AI模型。

其他用例

AI在实现工业4.0的承诺中发挥着关键作用。MongoDB 还可支持许多其他AI用例,其中包括:

物流优化:AI可以帮助优化路线,从而减少延误并提高日常配送的效率。

质量控制和缺陷检测:在产品生产过程中,计算机或机器视觉可用于识别产品中的异常,确保产品精度达标。

生产优化:通过分析生产线上安装的传感器的时间序列数据,可以识别并减少浪费,从而提高产量和效率。

智能售后支持:制造商可以利用AI驱动的对话机器人和预测分析,为客户提供主动维护、故障排除和个性化帮助等服务。

个性化产品推荐:AI可用于分析用户行为和偏好,通过移动或Web应用提供个性化产品推荐,从而提高客户满意度并促进销售。

AI与制造业和汽车业的融合已经彻底改变了传统流程,为效率和创新带来了大量的机会。借助工业物联网和先进的分析技术,企业现在可以利用大量数据来加强库存管理和预测性维护。AI驱动的需求预测可确保最佳库存水平,而预测性维护技术可最大限度地减少停机时间并优化设备性能。

此外,随着汽车制造商对实现自动驾驶的投入,AI驱动的图像识别和实时数据分析能力变得至关重要。MongoDB 是一个有效的解决方案,通过提供灵活的文档建模和强大的存储功能,应对工业 4.0 的复杂问题。

除制造业和汽车行业外,MongoDB 具备的AI潜力还可扩展到物流优化、质量控制、生产效率、智能售后支持和个性化客户体验等领域,从而塑造工业 4.0 及更远的未来。

以上是本篇的全部内容,在本系列的下一篇文章中,我们将讨论MongoDB+AI在电信和媒体行业的应用。敬请持续关注MongoDB数据平台官方公众号。

敬请期待阿里云MongoDB 的检索和向量新特性


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/601789
推荐阅读
相关标签