赞
踩
MySQL 5.7的Optimizer跟踪解析
在Mysql 5.7以后引入了强大的optmizer跟踪,这样可以帮助我们在分析sql执行计划时了解
mysql为什么会选择某种执行带来很大方便.对于分析和调整sql语句性能有很大帮助
测试环境
mysql> select version();
+------------+
| version() |
+------------+
| 5.7.10-log |
+------------+
mysql> create table t1 (a int auto_increment primary key, b int,c int);
Query OK, 0 rows affected (0.01 sec)
mysql> alter table t1 add key ix_b (b);
插入一些测试数据
打开优化器跟踪
mysql> set optimizer_trace='enabled=on'
执行语句
mysql> select * from t1 where b=2
从该语句来考察,我们知道该语句有全表扫描和扫描索引再扫描表数据的两种方式.
我们来看看mysql的优化器是怎么认为的
查看跟踪数据.
mysql> select * from information_schema.OPTIMIZER_TRACE
该视图只能是在当前跟踪的会话中看到,所以必须要和执行的sql在同一个会话
跟踪的结果接近有两百行,我们一步一步来看mysql的优化器是怎么评估的
{
"steps": [
{
"join_preparation": {
"select#": 1,
"steps": [
{
"expanded_query": "/* select#1 */ select `t1`.`a` AS `a`,`t1`.`b` AS `b`,`t1`.`c` AS `c` from `t1` where
(`t1`.`b` = 2)"
---join_preparation,这一步也称为查询转换,可以看到我们执行的select *,而mysql会把所有的栏位都解析出来,最终执行的sql是这个
样子,在这一步还会做一些视图转换,子查询转换等一些工作.
}
]
}
},
{
"join_optimization": {
--查询优化阶段
"select#": 1,
"steps": [
{
"condition_processing": {
"condition": "WHERE",
"original_condition": "(`t1`.`b` = 2)",
"steps": [
{
"transformation": "equality_propagation",
"resulting_condition": "multiple equal(2, `t1`.`b`)"
},
{
"transformation": "constant_propagation",
"resulting_condition": "multiple equal(2, `t1`.`b`)"
},
{
"transformation": "trivial_condition_removal",
"resulting_condition": "multiple equal(2, `t1`.`b`)"
}
]
}
},
--条件处理,相等传播,常量传播,条件移除(主要是对一些无关的条件进行消除)
{
"substitute_generated_columns": {
}
},
--替代产生的栏位
{
"table_dependencies": [
{
"table": "`t1`",
"row_may_be_null": false,
"map_bit": 0,
"depends_on_map_bits": [
]
}
]
},
{
"ref_optimizer_key_uses": [
{
"table": "`t1`",
"field": "b",
"equals": "2",
"null_rejecting": false
}
]
},
{
"rows_estimation": [
--最重的一步,优化器评估可选的执行方式,
{
"table": "`t1`",
"range_analysis": {
"table_scan": {
"rows": 7,
"cost": 4.5
--全表扫描,行,成本
},
"potential_range_indexes": [
{
"index": "PRIMARY",
"usable": false,
"cause": "not_applicable"
--主健扫描,但是不可用,所以没有被选择
},
{
"index": "ix_b",
"usable": true,
"key_parts": [
"b",
"a"
]
}
],
--索引ix_b被选择
"setup_range_conditions": [
],
"group_index_range": {
"chosen": false,
"cause": "not_group_by_or_distinct"
},
"analyzing_range_alternatives": {
"range_scan_alternatives": [
{
"index": "ix_b",
"ranges": [
"2 <= b <= 2"
],
"index_dives_for_eq_ranges": true,
--优化器发现索引使用的条件是相等条件
"rowid_ordered": true,
"using_mrr": false,
"index_only": false,
"rows": 2,
"cost": 3.41,
"chosen": true
}
],
"analyzing_roworder_intersect": {
"usable": false,
"cause": "too_few_roworder_scans"
}
},
"chosen_range_access_summary": {
"range_access_plan": {
"type": "range_scan",
"index": "ix_b",
"rows": 2,
"ranges": [
"2 <= b <= 2"
]
},
"rows_for_plan": 2,
"cost_for_plan": 3.41,
"chosen": true
--在这个解段发现可以使用range的方式扫描,计算出行和成本等信息
}
}
}
]
},
{
"considered_execution_plans": [
{
"plan_prefix": [
],
"table": "`t1`",
"best_access_path": {
"considered_access_paths": [
{
"access_type": "ref",
"index": "ix_b",
"rows": 2,
"cost": 2.4,
"chosen": true
},
{
"access_type": "range",
"range_details": {
"used_index": "ix_b"
},
"chosen": false,
"cause": "heuristic_index_cheaper"
}
]
},
"condition_filtering_pct": 100,
"rows_for_plan": 2,
"cost_for_plan": 2.4,
"chosen": true
}
--最终选择的扫描方式是ref,优化器认为使用range索引扫描方式成本会更高,heuristic_index_cheaper
]
},
{
"attaching_conditions_to_tables": {
"original_condition": "(`t1`.`b` = 2)",
"attached_conditions_computation": [
],
"attached_conditions_summary": [
{
"table": "`t1`",
"attached": null
}
]
}
},
{
"refine_plan": [
{
"table": "`t1`"
}
从以上的过程中,我们可以看出mysql对于一个sql语句主要分为三个部分(即使一个语句也称为join): join preparation,join
optimization,join exectuion.而optimizer对于join exectuion没有任何跟踪信息,optimzier只负责前两个部分
在join preparation主要是对sql语句进行了一些初始化的处理,而且这个和mysql的版有一定的联系,mysql把我们发送过来的sql进行一定
的转换,再进行进一步的处理.
在join optimization阶段主要进行了条件处理(相等传播,常量传播,条件化简),替代栏位,行评估,所有的计划分析,最后的执行选择等 .
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。