今天写《WCF技术剖析(卷2)》关于《WCF扩展》一章,举了“如何通过WCF扩展实现与IoC框架(以Unity为例)集成”(《通过自定义ServiceHost实现对WCF的扩展[实例篇]》)的例子。为了展示Unity如何实现几种典型的注入方式(构造器注入、属性注入和方法注入),我写了一个简单的小程序。如果读者对Unity或者IoC没有太多概念,我觉得这个小程序对于你初步地认识它们具有一定的帮助意义。如果你对Unity或者IoC有深入的认识,请忽略本文。[源代码从这里下载]
首先创建一个控制台程序,并添加如下两个基于Unity的程序集被引用:Microsoft.Practices.Unity.dll和Microsoft.Practices.Unity.Configuration.dll。然后定义如下几个接口(IA、IB、IC和ID)和它们各自的实现类(A、B、C、D)。在类型A中定义了3个属性B、C和D,其类型分别为接口IB、IC和ID。其中属性B在构在函数中被初始化;属性C上应用了Microsoft.Practices.Unity.DependencyAttribute特性,意味着这是一个需要以属性注入方式被初始化的依赖属性;属性D则通过方法Initialize初始化,该方法上应用了Microsoft.Practices.Unity.InjectionMethodAttribute,意味着这是一个注入方法会被自动调用。
1: namespace UnityDemo
2: {
3: public interface IA { }
4: public interface IB { }
5: public interface IC { }
6: public interface ID {}
7:
8: public class A : IA
9: {
10: public IB B { get; set; }
11: [Dependency]
12: public IC C { get; set; }
13: public ID D { get; set; }
14:
15: public A(IB b)
16: {
17: this.B = b;
18: }
19: [InjectionMethod]
20: public void Initialize(ID d)
21: {
22: this.D = d;
23: }
24: }
25: public class B: IB{}
26: public class C: IC{}
27: public class D: ID{}
28: }
然后我们为该应用添加一个配置文件,并定义如下一段关于Unity的配置。在这段配置中,定义了一个名称为defaultContainer的Unity容器,并在其中完成了上面定义的接口和对应实现类之间映射的类型匹配。
1: <?xml version="1.0"?>
2: <configuration>
3: <configSections>
4: <section name="unity" type="Microsoft.Practices.Unity.Configuration.UnityConfigurationSection, Microsoft.Practices.Unity.Configuration"/>
5: </configSections>
6: <unity>
7: <containers>
8: <container name="defaultContainer">
9: <register type="UnityDemo.IA, UnityDemo" mapTo="UnityDemo.A, UnityDemo"/>
10: <register type="UnityDemo.IB, UnityDemo" mapTo="UnityDemo.B, UnityDemo"/>
11: <register type="UnityDemo.IC, UnityDemo" mapTo="UnityDemo.C, UnityDemo"/>
12: <register type="UnityDemo.ID, UnityDemo" mapTo="UnityDemo.D, UnityDemo"/>
13: </container>
14: </containers>
15: </unity>
16: </configuration>
最后在Main方法中编写如下的程序:创建一个代表IoC容器的UnityContainer对象,并加载配置信息对其进行初始化。然后调用它的泛型的Resolve方法创建一个实现了泛型接口IA的对象。最后将返回对象转变成类型A,并检验其B、C和D属性是否是空。
1: static void Main(string[] args)
2: {
3: IUnityContainer container = new UnityContainer();
4: UnityConfigurationSection configuration = (UnityConfigurationSection)ConfigurationManager.GetSection(UnityConfigurationSection.SectionName);
5: configuration.Configure(container, "defaultContainer");
6: A a = container.Resolve<IA>() as A;
7: if (null != a)
8: {
9: Console.WriteLine("a.B == null ? {0}", a.B == null ? "Yes" : "No");
10: Console.WriteLine("a.C == null ? {0}", a.C == null ? "Yes" : "No");
11: Console.WriteLine("a.D == null ? {0}", a.D == null ? "Yes" : "No");
12: }
13: }
从如下给出的执行结果我们可以得到这样的结论:通过Resolve<IA>方法返回的是一个类型为A的对象;该对象的三个属性被进行了有效的初始化。这个简单的程序分别体现了接口注入(通过相应的接口根据配置解析出相应的实现类型)、构造器注入(属性B)、属性注入(属性C)和方法注入(属性D)。
1: a.B == null ? No
2: a.C == null ? No
3: a.D == null ? No
关于IoC/DI
所谓控制反转(IoC: Inversion Of Control)就是应用本身不负责依赖对象的创建和维护,而交给一个外部容器来负责。这样控制权就由应用转移到了外部IoC容器,控制权就实现了所谓的反转。比如,在类型A中需要使用类型B的实例,而B实例的创建并不由A来负责,而是通过外部容器来创建。
有时我们又将IoC成为依赖注入(DI: Dependency Injection)。所谓依赖注入,就是由外部容器在运行时动态地将依赖的对象注入到组件之中。具体的依赖注入方式又包括如下三种典型的形式。
- 构造器注入(Constructor Injection):IoC容器会智能地选择选择和调用适合的构造函数以创建依赖的对象。如果被选择的构造函数具有相应的参数,IoC容器在调用构造函数之前会自定义创建相应参数对象;
- 属性注入(Property Injection):如果需要使用到被依赖对象的某个属性,在被依赖对象被创建之后,IoC容器会自动初始化该属性;
- 方法注入(Method Injection):如果被依赖对象需要调用某个方法进行相应的初始化,在该对象创建之后,IoC容器会自动调用该方法。
在开源社区,具有很有流行的IoC框架,比如Castle Windsor、Unity、Spring.NET、StructureMap、Ninject等。