当前位置:   article > 正文

Paper Reading - CNN+CNN: Convolutional Decoders for Image Captioning

cnn+cnn convolutional decoders for image caption

Link of the Paper: https://arxiv.org/abs/1805.09019

Innovations:

  • The authors propose a CNN + CNN framework for image captioning. There are four modules in the framework: vision module ( VGG-16 ), which is adopted to "watch" images; language module, which is to model sentences; attention module, which connects the vision module with the language module; prediction module, which takes the visual features from the attention module and concepts from the language module as input and predicts the next word.

        

General Points:

  • RNNs or LSTMs cannot be calculated in parallel and ignore the underlying hierarchical structure of a sentence.
  • Directly feeding the output of the CNN into the RNN treats objects in an image the same and ignores the salient objects when generating one word.
  • In both m-RNN and NIC, an image is represented by a single vector, which ignores different areas and objects in the image. A spatial attention mechanism is introduced into image captioning model in Show, attend and tell: Neural image caption generation with visual attention, which allows the model to pay attention to different areas at each time step.
posted on 2018-08-27 15:45  LZ_Jaja 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/zlian2016/p/9542632.html

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号