赞
踩
conda create -n llama31 python=3.11
pip3 install torch torchvision torchaudio
git clone -b support-llama3 https://github.com/lvhan028/lmdeploy.git
pip install .
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/settings/tokens
huggingface-cli download --token hf_*** --resume-download meta-llama/Meta-Llama-3.1-8B-
Instruct --local-dir Meta-Llama-3.1-8B-Instruct
lmdeploy chat /root/models/Meta-Llama-3.1-8B-Instruct
一开始效果不好,后来使用这个分支重新安装lmdeploy解决
https://github.com/lvhan028/lmdeploy/tree/support-llama3
参考如下项目 https://github.com/NagatoYuki0943/Llama3.1-Lmdeploy
pip install xtuner==0.1.23
pip install -U torch
xtuner train /root/ft-ruozhiba/config/llama3_8b_instruct_qlora_alpaca_e3.py --work-dir /root/ft-ruozhiba/train --deepspeed deepspeed_zero2
export MKL_SERVICE_FORCE_INTEL=1
xtuner convert pth_to_hf /root/ft-ruozhiba/train/llama3_8b_instruct_qlora_alpaca_e3.py /root/ft-ruozhiba/train/iter_96.pth/ /root/ft-ruozhiba/huggingface
xtuner convert merge /root/ft-ruozhiba/model /root/ft-ruozhiba/huggingface /root/ft-ruozhiba/final_model
xtuner chat /root/ft-ruozhiba/final_model --prompt-template llama3_chat
# Copyright (c) OpenMMLab. All rights reserved. import torch from datasets import load_dataset from mmengine.dataset import DefaultSampler from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, LoggerHook, ParamSchedulerHook) from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR from peft import LoraConfig from torch.optim import AdamW from transformers import (AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig) from xtuner.dataset import process_hf_dataset from xtuner.dataset.collate_fns import default_collate_fn from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook, VarlenAttnArgsToMessageHubHook) from xtuner.engine.runner import TrainLoop from xtuner.model import SupervisedFinetune from xtuner.parallel.sequence import SequenceParallelSampler from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE ####################################################################### # PART 1 Settings # ####################################################################### # Model pretrained_model_name_or_path = '/root/ft-ruozhiba/model' use_varlen_attn = False # Data alpaca_en_path = '/root/ft-ruozhiba/data/ruozhiba_ruozhiba.jsonl' prompt_template = PROMPT_TEMPLATE.llama3_chat max_length = 2048 pack_to_max_length = True # parallel sequence_parallel_size = 1 # Scheduler & Optimizer batch_size = 1 # per_device accumulative_counts = 16 accumulative_counts *= sequence_parallel_size dataloader_num_workers = 0 max_epochs = 3 optim_type = AdamW lr = 2e-4 betas = (0.9, 0.999) weight_decay = 0 max_norm = 1 # grad clip warmup_ratio = 0.03 # Save save_steps = 500 save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited) # Evaluate the generation performance during the training evaluation_freq = 500 SYSTEM = SYSTEM_TEMPLATE.alpaca evaluation_inputs = ['为什么我爸妈结婚的时候没邀请我参加婚礼'] ####################################################################### # PART 2 Model & Tokenizer # ####################################################################### tokenizer = dict( type=AutoTokenizer.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True, padding_side='right') model = dict( type=SupervisedFinetune, use_varlen_attn=use_varlen_attn, llm=dict( type=AutoModelForCausalLM.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True, torch_dtype=torch.float16, quantization_config=dict( type=BitsAndBytesConfig, load_in_4bit=True, load_in_8bit=False, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4')), lora=dict( type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.1, bias='none', task_type='CAUSAL_LM')) ####################################################################### # PART 3 Dataset & Dataloader # ####################################################################### alpaca_en = dict( type=process_hf_dataset, # dataset=dict(type=load_dataset, path=alpaca_en_path), dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)), tokenizer=tokenizer, max_length=max_length, dataset_map_fn=alpaca_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), remove_unused_columns=True, shuffle_before_pack=True, pack_to_max_length=pack_to_max_length, use_varlen_attn=use_varlen_attn) sampler = SequenceParallelSampler \ if sequence_parallel_size > 1 else DefaultSampler train_dataloader = dict( batch_size=batch_size, num_workers=dataloader_num_workers, dataset=alpaca_en, sampler=dict(type=sampler, shuffle=True), collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn)) ####################################################################### # PART 4 Scheduler & Optimizer # ####################################################################### # optimizer optim_wrapper = dict( type=AmpOptimWrapper, optimizer=dict( type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), accumulative_counts=accumulative_counts, loss_scale='dynamic', dtype='float16') # learning policy # More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 param_scheduler = [ dict( type=LinearLR, start_factor=1e-5, by_epoch=True, begin=0, end=warmup_ratio * max_epochs, convert_to_iter_based=True), dict( type=CosineAnnealingLR, eta_min=0.0, by_epoch=True, begin=warmup_ratio * max_epochs, end=max_epochs, convert_to_iter_based=True) ] # train, val, test setting train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) ####################################################################### # PART 5 Runtime # ####################################################################### # Log the dialogue periodically during the training process, optional custom_hooks = [ dict(type=DatasetInfoHook, tokenizer=tokenizer), dict( type=EvaluateChatHook, tokenizer=tokenizer, every_n_iters=evaluation_freq, evaluation_inputs=evaluation_inputs, system=SYSTEM, prompt_template=prompt_template) ] if use_varlen_attn: custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)] # configure default hooks default_hooks = dict( # record the time of every iteration. timer=dict(type=IterTimerHook), # print log every 10 iterations. logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), # enable the parameter scheduler. param_scheduler=dict(type=ParamSchedulerHook), # save checkpoint per `save_steps`. checkpoint=dict( type=CheckpointHook, by_epoch=False, interval=save_steps, max_keep_ckpts=save_total_limit), # set sampler seed in distributed evrionment. sampler_seed=dict(type=DistSamplerSeedHook), ) # configure environment env_cfg = dict( # whether to enable cudnn benchmark cudnn_benchmark=False, # set multi process parameters mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # set distributed parameters dist_cfg=dict(backend='nccl'), ) # set visualizer visualizer = None # set log level log_level = 'INFO' # load from which checkpoint load_from = None # whether to resume training from the loaded checkpoint resume = False # Defaults to use random seed and disable `deterministic` randomness = dict(seed=None, deterministic=False) # set log processor log_processor = dict(by_epoch=False)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。