赞
踩
2020年发表的海洋捕食者算法《Marine Predators Algorithm: A nature-inspired metaheuristic》。
作者只在原论文中给出了MATLAB代码,网上也没有Python版本,我自己用Python重写了MATLAB代码。
- """
- 2020海洋捕食者算法
- """
- import numpy as np
- import random
- import math
-
- def initial(pop, dim, ub, lb):
- X = np.zeros([pop, dim])
- for i in range(pop):
- for j in range(dim):
- X[i, j] = random.random() * (ub[j] - lb[j]) + lb[j] # 均匀分布随机初始化
-
- return X, lb, ub
-
-
- # 将超过边界的直接用边界值赋值
- def BorderCheckForOne(x, ub, lb, pop, dim):
- if x > ub[0]:
- x = ub[0]
- elif x < lb[0]:
- x = lb[0]
- return x
-
- def levy(n, m, beta):
- num = math.gamma(1+beta)*math.sin(math.pi*beta/2)
- den = math.gamma((1+beta)/2) * beta * 2**((beta-1)/2)
- sigma_u = (num/den)**(1/beta)
- u = np.random.normal(0,sigma_u,(n,m))
- v = np.random.normal(0,1,(n,m))
-
- return u/(np.abs(v)**(1/beta)) ## ^的用法好像有错
-
-
- def MPA(pop, dim, lb, ub, MaxIter, fun):
- Top_predator_pos = np.zeros(dim) #或者np.zeros([1,dim])
- Top_predator_fit = float("inf")
-
- Convergence_curve = np.zeros(MaxIter)
- stepsize = np.zeros([pop, dim]) # pop×dim
- fitness = np.inf * np.ones([pop, 1]) # pop×1
-
- # 初始化种群
- X, lb, ub = initial(pop, dim, ub, lb)
-
- Xmin = lb[0] * np.ones([pop, dim])
- Xmax = ub[0] * np.ones([pop, dim])
-
- Iter = 0
- FADs = 0.2
- P = 0.5
-
- while Iter < MaxIter:
-
- # =================== 对上一轮的进行复盘 ============
- for i in range(0, pop):
- # 1.边界检测
- for j in range(0, dim):
- X[i, j] = BorderCheckForOne(X[i, j], ub, lb, pop, dim)
-
- # 2.计算每个鲨鱼的适应度值
- fitness[i, 0] = fun(X[i, :])
- if fitness[i, 0] < Top_predator_fit: # 23个基准函数都是越小越好
- Top_predator_fit = fitness[i, 0].copy()
- Top_predator_pos = X[i, :].copy()
-
- # =================== Memory saving ===============
- if Iter == 0:
- fit_old = fitness.copy()
- X_old = X.copy()
-
- for i in range(pop):
- if fit_old[i, 0] < fitness[i, 0]:
- fitness[i, 0] = fit_old[i, 0].copy() # 如果上一轮的位置更好,还是用上一轮的
- X[i, :] = X_old[i, :].copy()
-
- fit_old = fitness.copy()
- X_old = X.copy()
-
- # =================== Levy=======
- Elite = np.ones([pop, 1]) * Top_predator_pos
- CF = (1-Iter/MaxIter)**(2*Iter/MaxIter)
-
- RL=0.05*levy(pop, dim, 1.5) # levy返回一个pop×dim的矩阵
- RB = np.random.randn(pop, dim) # 满足正态分布的pop×dim大小矩阵
-
- # ===============遍历每个个体==============
- for i in range(pop):
- for j in range(dim):
- R = random.random()
- # ================公式12============
- if Iter < MaxIter/3:
- stepsize[i, j] = RB[i, j] * ( Elite[i, j]-RB[i, j]*X[i, j] )
- X[i, j] = X[i, j] + P*R*stepsize[i, j]
- # ===============公式13 和 14=======
- elif Iter>MaxIter/3 and Iter < 2*MaxIter/3:
- if i > pop/2:
- stepsize[i, j] = RB[i, j] * (RB[i, j]*Elite[i, j]-X[i, j])
- X[i, j] = Elite[i, j] + P*CF*stepsize[i, j]
- else:
- stepsize[i, j] = RL[i, j] * (Elite[i, j]-RL[i, j]*X[i, j])
- X[i, j] = X[i, j] + P * R *stepsize[i, j]
- # ==============公式15==============
- else:
- stepsize[i, j] = RL[i, j]*( RL[i, j]*Elite[i, j]-X[i, j])
- X[i, j] = Elite[i, j] + P*CF*stepsize[i, j]
-
- # =================== 对上一轮的进行复盘 ============
- for i in range(0, pop):
- # 1.边界检测
- for j in range(0, dim):
- X[i, j] = BorderCheckForOne(X[i, j], ub, lb, pop, dim)
-
- # 2.计算每个鲨鱼的适应度值
- fitness[i, 0] = fun(X[i, :])
- if fitness[i, 0] < Top_predator_fit: # 23个基准函数都是越小越好
- Top_predator_fit = fitness[i, 0].copy()
- Top_predator_pos = X[i, :].copy()
-
- # =================== Memory saving ===============
- if Iter == 0:
- fit_old = fitness.copy()
- X_old = X.copy()
-
- for i in range(pop):
- if fit_old[i, 0] < fitness[i, 0]:
- fitness[i, 0] = fit_old[i, 0].copy() # 如果上一轮的位置更好,还是用上一轮的
- X[i, :] = X_old[i, :].copy()
-
- fit_old = fitness.copy()
- X_old = X.copy()
-
- # =====================对整体进行一个更新(公式16)=====
- if random.random() < FADs:
- U = (np.random.rand(pop, dim) < FADs)
- X = X + CF*np.multiply(Xmin + np.multiply(np.random.rand(pop, dim), (Xmax-Xmin)), U)
- else:
- r = random.random()
- stepsize = (FADs*(1-r)+r) * (X[random.sample(range(0, pop), pop),:] - X[random.sample(range(0, pop), pop),:])
- X = X + stepsize
-
- Iter = Iter+1
- if Iter!=MaxIter:
- Convergence_curve[Iter] = Top_predator_fit
-
- return Top_predator_fit, Top_predator_pos, Convergence_curve
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
在23个基准函数上跑了一遍,验证得代码正确
fun 1 ---- 4 轮的平均值: 1.590879014464718e-22
fun 2 ---- 4 轮的平均值: 3.1015801972813803e-13
fun 3 ---- 4 轮的平均值: 2.1687101928786233e-05
fun 4 ---- 4 轮的平均值: 2.738516688049143e-09
fun 5 ---- 4 轮的平均值: 24.3651022631242
fun 6 ---- 4 轮的平均值: 1.5518969799868655e-08
fun 7 ---- 4 轮的平均值: 0.0007603777498045276
fun 8 ---- 4 轮的平均值: -9759.428902632117
fun 9 ---- 4 轮的平均值: 0.0
fun 10 ---- 4 轮的平均值: 1.1923795284474181e-12
fun 11 ---- 4 轮的平均值: 0.0
fun 12 ---- 4 轮的平均值: 9.427489581332269e-10
fun 13 ---- 4 轮的平均值: 2.018121184109257e-08
fun 14 ---- 4 轮的平均值: 0.9980038377944498
fun 15 ---- 4 轮的平均值: 0.00030748598780886593
fun 16 ---- 4 轮的平均值: -1.0316284534898776
fun 17 ---- 4 轮的平均值: 0.39788735772973816
fun 18 ---- 4 轮的平均值: 2.999999999999924
fun 19 ---- 4 轮的平均值: -3.862782147820756
fun 20 ---- 4 轮的平均值: -3.3219951715813822
fun 21 ---- 4 轮的平均值: -10.153199679022137
fun 22 ---- 4 轮的平均值: -10.40294056677283
fun 23 ---- 4 轮的平均值: -10.53640981666291
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。