当前位置:   article > 正文

AI:163-使用Python进行机器学习模型的调参与优化_python设置网格调参

python设置网格调参

本文收录于专栏:精通AI实战千例专栏合集

从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。
每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~

一.使用Python进行机器学习模型的调参与优化

机器学习模型的性能往往受到参数的选择和调整的影响。调参是指通过调整模型的超参数(Hyperparameters),以达到最佳性能和泛化能力的过程。Python在机器学习领域有着丰富的工具和库,使得调参和优化过程变得更加高效。本文将介绍如何使用Python中常用的工具和技术来进行机器学习模型的调参与优化,并提供案例代码来演示。

image-20240326192109251

1. 参数搜索方法

1.1 网格搜索(Grid Search)

网格搜索是一种常用的参数搜索方法,它会穷举指定的参数组合,并通过交叉验证来评估每个参数组合的性能。在Python中,可以使用GridSearchCV类来实现网格搜索。

from sklearn
    声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/秋刀鱼在做梦/article/detail/911498
    推荐阅读
    相关标签
      

    闽ICP备14008679号